1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
|
-- EMACS settings: -*- tab-width: 2; indent-tabs-mode: t -*-
-- vim: tabstop=2:shiftwidth=2:noexpandtab
-- kate: tab-width 2; replace-tabs off; indent-width 2;
--
-- =============================================================================
-- Authors: Patrick Lehmann
--
-- Module: Sorting Network: Odd-Even-Sort (Transposition)
--
-- Description:
-- ------------------------------------
-- TODO
--
-- License:
-- =============================================================================
-- Copyright 2007-2015 Technische Universitaet Dresden - Germany
-- Chair for VLSI-Design, Diagnostics and Architecture
--
-- Licensed under the Apache License, Version 2.0 (the "License");
-- you may not use this file except in compliance with the License.
-- You may obtain a copy of the License at
--
-- http://www.apache.org/licenses/LICENSE-2.0
--
-- Unless required by applicable law or agreed to in writing, software
-- distributed under the License is distributed on an "AS IS" BASIS,
-- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-- See the License for the specific language governing permissions and
-- limitations under the License.
-- =============================================================================
library IEEE;
use IEEE.STD_LOGIC_1164.all;
package vectors is
type T_SLM is array(NATURAL range <>, NATURAL range <>) of STD_LOGIC;
end package;
library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.NUMERIC_STD.all;
--library PoC;
-- use PoC.utils.all;
--use PoC.vectors.all;
--use PoC.components.all;
use work.vectors.all;
entity sortnet_OddEvenSort is
generic (
INPUTS : POSITIVE := 8;
KEY_BITS : POSITIVE := 16;
DATA_BITS : NATURAL := 16;
PIPELINE_STAGE_AFTER : NATURAL := 2;
ADD_OUTPUT_REGISTERS : BOOLEAN := TRUE;
INVERSE : BOOLEAN := FALSE
);
port (
Clock : in STD_LOGIC;
Reset : in STD_LOGIC;
DataInputs : in T_SLM(INPUTS - 1 downto 0, DATA_BITS - 1 downto 0);
DataOutputs : out T_SLM(INPUTS - 1 downto 0, DATA_BITS - 1 downto 0)
);
end entity;
architecture rtl of sortnet_OddEvenSort is
constant C_VERBOSE : BOOLEAN := FALSE;
constant STAGES : POSITIVE := INPUTS;
subtype T_DATA is STD_LOGIC_VECTOR(DATA_BITS - 1 downto 0);
type T_DATA_VECTOR is array(NATURAL range <>) of T_DATA;
type T_DATA_MATRIX is array(NATURAL range <>, NATURAL range <>) of T_DATA;
function to_dv(slm : T_SLM) return T_DATA_VECTOR is
variable Result : T_DATA_VECTOR(slm'range(1));
begin
for i in slm'range(1) loop
for j in slm'high(2) downto slm'low(2) loop
Result(i)(j) := slm(i, j);
end loop;
end loop;
return Result;
end function;
function to_slm(dv : T_DATA_VECTOR) return T_SLM is
variable Result : T_SLM(dv'range, T_DATA'range);
begin
for i in dv'range loop
for j in T_DATA'range loop
Result(i, j) := dv(i)(j);
end loop;
end loop;
return Result;
end function;
function mux(sel : STD_LOGIC; slv0 : STD_LOGIC_VECTOR; slv1 : STD_LOGIC_VECTOR) return STD_LOGIC_VECTOR is
begin
return (slv0 and not (slv0'range => sel)) or (slv1 and (slv1'range => sel));
end function;
signal DataInputVector : T_DATA_VECTOR(INPUTS - 1 downto 0);
signal DataInputMatrix : T_DATA_MATRIX(STAGES - 1 downto 0, INPUTS - 1 downto 0);
signal DataOutputMatrix : T_DATA_MATRIX(STAGES - 1 downto 0, INPUTS - 1 downto 0);
signal DataOutputVector : T_DATA_VECTOR(INPUTS - 1 downto 0);
begin
DataInputVector <= to_dv(DataInputs);
genInputs : for i in 0 to INPUTS - 1 generate
DataInputMatrix(0, i) <= DataInputVector(i);
end generate;
genConStage : for stage in 0 to STAGES - 2 generate
constant INSERT_REGISTER : BOOLEAN := ((PIPELINE_STAGE_AFTER > 0) and (stage mod PIPELINE_STAGE_AFTER = 0));
begin
genCon : for i in 0 to INPUTS - 1 generate
genPipeStage : if (INSERT_REGISTER = TRUE) generate
DataInputMatrix(stage + 1, i) <= DataOutputMatrix(stage, i) when rising_edge(Clock);
end generate;
genNoPipeStage : if (INSERT_REGISTER = FALSE) generate
DataInputMatrix(stage + 1, i) <= DataOutputMatrix(stage, i);
end generate;
end generate;
end generate;
genSwitchStage : for stage in 0 to STAGES - 1 generate
begin
genEven : if (stage mod 2 = 0) generate
genEvenSwitch : for i in 0 to (INPUTS / 2) - 1 generate
signal DataIn0 : STD_LOGIC_VECTOR(DATA_BITS - 1 downto 0);
signal DataIn1 : STD_LOGIC_VECTOR(DATA_BITS - 1 downto 0);
signal Greater : STD_LOGIC;
signal Switch : STD_LOGIC;
begin
DataIn0 <= DataInputMatrix(stage, 2 * i);
DataIn1 <= DataInputMatrix(stage, 2 * i + 1);
Greater <= '1' when (unsigned(DataIn0(KEY_BITS - 1 downto 0)) > unsigned(DataIn1(KEY_BITS - 1 downto 0))) else '0';
Switch <= Greater;
DataOutputMatrix(stage, 2 * i) <= mux(Switch, DataIn0, DataIn1);
DataOutputMatrix(stage, 2 * i + 1) <= mux(Switch, DataIn1, DataIn0);
end generate;
end generate;
genOdd : if (stage mod 2 = 1) generate
DataOutputMatrix(stage, 0) <= DataInputMatrix(stage, 0);
DataOutputMatrix(stage, INPUTS - 1) <= DataInputMatrix(stage, INPUTS - 1);
genOddSwitch : for i in 0 to ((INPUTS - 1) / 2) - 1 generate
signal DataIn0 : STD_LOGIC_VECTOR(DATA_BITS - 1 downto 0);
signal DataIn1 : STD_LOGIC_VECTOR(DATA_BITS - 1 downto 0);
signal Greater : STD_LOGIC;
signal Switch : STD_LOGIC;
begin
DataIn0 <= DataInputMatrix(stage, 2 * i + 1);
DataIn1 <= DataInputMatrix(stage, 2 * i + 2);
Greater <= '1' when (unsigned(DataIn0(KEY_BITS - 1 downto 0)) > unsigned(DataIn1(KEY_BITS - 1 downto 0))) else '0';
Switch <= Greater;
DataOutputMatrix(stage, 2 * i + 1) <= mux(Switch, DataIn0, DataIn1);
DataOutputMatrix(stage, 2 * i + 2) <= mux(Switch, DataIn1, DataIn0);
end generate;
end generate;
end generate;
genOutputs : for i in 0 to INPUTS - 1 generate
DataOutputVector(i) <= DataOutputMatrix(STAGES - 1, i);
end generate;
genOutReg : if (ADD_OUTPUT_REGISTERS = TRUE) generate
DataOutputs <= to_slm(DataOutputVector) when rising_edge(Clock);
end generate;
genNoOutReg : if (ADD_OUTPUT_REGISTERS = FALSE) generate
DataOutputs <= to_slm(DataOutputVector);
end generate;
end architecture;
|