summaryrefslogtreecommitdiff
path: root/src/vhdl/simulate/simulation.adb
blob: b3a0160fc2134241c6c59e01185ed3fbedf4715b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
--  Interpreted simulation
--  Copyright (C) 2014 Tristan Gingold
--
--  GHDL is free software; you can redistribute it and/or modify it under
--  the terms of the GNU General Public License as published by the Free
--  Software Foundation; either version 2, or (at your option) any later
--  version.
--
--  GHDL is distributed in the hope that it will be useful, but WITHOUT ANY
--  WARRANTY; without even the implied warranty of MERCHANTABILITY or
--  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
--  for more details.
--
--  You should have received a copy of the GNU General Public License
--  along with GHDL; see the file COPYING.  If not, write to the Free
--  Software Foundation, 59 Temple Place - Suite 330, Boston, MA
--  02111-1307, USA.

with Ada.Unchecked_Conversion;
with Ada.Text_IO; use Ada.Text_IO;
with Errorout; use Errorout;
with Iirs_Utils; use Iirs_Utils;
with Trans_Analyzes;
with Types; use Types;
with Debugger; use Debugger;
with Simulation.AMS.Debugger;
with Areapools; use Areapools;
with Grt.Stacks;
with Grt.Signals;
with Grt.Processes;
with Grt.Main;
with Grt.Errors;
with Grt.Rtis;

package body Simulation is

   function Value_To_Iir_Value (Mode : Mode_Type; Val : Value_Union)
                               return Iir_Value_Literal_Acc is
   begin
      case Mode is
         when Mode_B1 =>
            return Create_B1_Value (Val.B1);
         when Mode_E32 =>
            return Create_E32_Value (Val.E32);
         when Mode_I64 =>
            return Create_I64_Value (Val.I64);
         when Mode_F64 =>
            return Create_F64_Value (Val.F64);
         when others =>
            raise Internal_Error;  -- FIXME
      end case;
   end Value_To_Iir_Value;

   procedure Iir_Value_To_Value (Src : Iir_Value_Literal_Acc;
                                 Dst : out Value_Union) is
   begin
      case Src.Kind is
         when Iir_Value_B1 =>
            Dst.B1 := Src.B1;
         when Iir_Value_E32 =>
            Dst.E32 := Src.E32;
         when Iir_Value_I64 =>
            Dst.I64 := Src.I64;
         when Iir_Value_F64 =>
            Dst.F64 := Src.F64;
         when others =>
            raise Internal_Error;  -- FIXME
      end case;
   end Iir_Value_To_Value;

   type Read_Signal_Flag_Enum is
     (Read_Signal_Event,
      Read_Signal_Active,
      --  In order to reuse the same code (that returns immediately if the
      --  attribute is true), we use not driving.
      Read_Signal_Not_Driving);

   function Read_Signal_Flag (Lit: Iir_Value_Literal_Acc;
                              Kind : Read_Signal_Flag_Enum)
                             return Boolean
   is
   begin
      case Lit.Kind is
         when Iir_Value_Array =>
            for I in Lit.Val_Array.V'Range loop
               if Read_Signal_Flag (Lit.Val_Array.V (I), Kind) then
                  return True;
               end if;
            end loop;
            return False;
         when Iir_Value_Record =>
            for I in Lit.Val_Record.V'Range loop
               if Read_Signal_Flag (Lit.Val_Record.V (I), Kind) then
                  return True;
               end if;
            end loop;
            return False;
         when Iir_Value_Signal =>
            case Kind is
               when Read_Signal_Event =>
                  return Lit.Sig.Event;
               when Read_Signal_Active =>
                  return Lit.Sig.Active;
               when Read_Signal_Not_Driving =>
                  if Grt.Signals.Ghdl_Signal_Driving (Lit.Sig) = True then
                     return False;
                  else
                     return True;
                  end if;
            end case;
         when others =>
            raise Internal_Error;
      end case;
   end Read_Signal_Flag;

   function Execute_Event_Attribute (Lit: Iir_Value_Literal_Acc)
                                    return Boolean is
   begin
      return Read_Signal_Flag (Lit, Read_Signal_Event);
   end Execute_Event_Attribute;

   function Execute_Active_Attribute (Lit: Iir_Value_Literal_Acc)
                                     return Boolean is
   begin
      return Read_Signal_Flag (Lit, Read_Signal_Active);
   end Execute_Active_Attribute;

   function Execute_Driving_Attribute (Lit: Iir_Value_Literal_Acc)
                                      return Boolean is
   begin
      return not Read_Signal_Flag (Lit, Read_Signal_Not_Driving);
   end Execute_Driving_Attribute;

   type Read_Signal_Value_Enum is
     (Read_Signal_Last_Value,

      --  For conversion functions.
      Read_Signal_Driving_Value,
      Read_Signal_Effective_Value,

      --  'Driving_Value
      Read_Signal_Driver_Value);

   function Execute_Read_Signal_Value (Sig: Iir_Value_Literal_Acc;
                                       Attr : Read_Signal_Value_Enum)
     return Iir_Value_Literal_Acc
   is
      Res: Iir_Value_Literal_Acc;
   begin
      case Sig.Kind is
         when Iir_Value_Array =>
            Res := Copy_Array_Bound (Sig);
            for I in Sig.Val_Array.V'Range loop
               Res.Val_Array.V (I) :=
                 Execute_Read_Signal_Value (Sig.Val_Array.V (I), Attr);
            end loop;
            return Res;
         when Iir_Value_Record =>
            Res := Create_Record_Value (Sig.Val_Record.Len);
            for I in Sig.Val_Record.V'Range loop
               Res.Val_Record.V (I) :=
                 Execute_Read_Signal_Value (Sig.Val_Record.V (I), Attr);
            end loop;
            return Res;
         when Iir_Value_Signal =>
            case Attr is
               when Read_Signal_Last_Value =>
                  return Value_To_Iir_Value
                    (Sig.Sig.Mode, Sig.Sig.Last_Value);
               when Read_Signal_Driver_Value =>
                  case Sig.Sig.Mode is
                     when Mode_F64 =>
                        return Create_F64_Value
                          (Grt.Signals.Ghdl_Signal_Driving_Value_F64
                             (Sig.Sig));
                     when Mode_I64 =>
                        return Create_I64_Value
                          (Grt.Signals.Ghdl_Signal_Driving_Value_I64
                             (Sig.Sig));
                     when Mode_E32 =>
                        return Create_E32_Value
                          (Grt.Signals.Ghdl_Signal_Driving_Value_E32
                             (Sig.Sig));
                     when Mode_B1 =>
                        return Create_B1_Value
                          (Grt.Signals.Ghdl_Signal_Driving_Value_B1
                             (Sig.Sig));
                     when others =>
                        raise Internal_Error;
                  end case;
               when Read_Signal_Effective_Value =>
                  return Value_To_Iir_Value
                    (Sig.Sig.Mode, Sig.Sig.Value);
               when Read_Signal_Driving_Value =>
                  return Value_To_Iir_Value
                    (Sig.Sig.Mode, Sig.Sig.Driving_Value);
            end case;
         when others =>
            raise Internal_Error;
      end case;
   end Execute_Read_Signal_Value;

   type Write_Signal_Enum is
     (Write_Signal_Driving_Value,
      Write_Signal_Effective_Value);

   procedure Execute_Write_Signal (Sig: Iir_Value_Literal_Acc;
                                   Val : Iir_Value_Literal_Acc;
                                   Attr : Write_Signal_Enum) is
   begin
      case Sig.Kind is
         when Iir_Value_Array =>
            pragma Assert (Val.Kind = Iir_Value_Array);
            pragma Assert (Sig.Val_Array.Len = Val.Val_Array.Len);
            for I in Sig.Val_Array.V'Range loop
               Execute_Write_Signal
                 (Sig.Val_Array.V (I), Val.Val_Array.V (I), Attr);
            end loop;
         when Iir_Value_Record =>
            pragma Assert (Val.Kind = Iir_Value_Record);
            pragma Assert (Sig.Val_Record.Len = Val.Val_Record.Len);
            for I in Sig.Val_Record.V'Range loop
               Execute_Write_Signal
                 (Sig.Val_Record.V (I), Val.Val_Record.V (I), Attr);
            end loop;
         when Iir_Value_Signal =>
            pragma Assert (Val.Kind in Iir_Value_Scalars);
            case Attr is
               when Write_Signal_Driving_Value =>
                  Iir_Value_To_Value (Val, Sig.Sig.Driving_Value);
               when Write_Signal_Effective_Value =>
                  Iir_Value_To_Value (Val, Sig.Sig.Value);
            end case;
         when others =>
            raise Internal_Error;
      end case;
   end Execute_Write_Signal;

   function Execute_Last_Value_Attribute (Indirect: Iir_Value_Literal_Acc)
     return Iir_Value_Literal_Acc is
   begin
      return Execute_Read_Signal_Value (Indirect, Read_Signal_Last_Value);
   end Execute_Last_Value_Attribute;

   function Execute_Driving_Value_Attribute (Indirect: Iir_Value_Literal_Acc)
                                            return Iir_Value_Literal_Acc is
   begin
      return Execute_Read_Signal_Value (Indirect, Read_Signal_Driver_Value);
   end Execute_Driving_Value_Attribute;

   type Signal_Read_Last_Type is
     (Read_Last_Event,
      Read_Last_Active);

   --  Return the Last_Event absolute time.
   function Execute_Read_Signal_Last (Indirect: Iir_Value_Literal_Acc;
                                      Kind : Signal_Read_Last_Type)
                                     return Ghdl_I64
   is
      Res: Ghdl_I64;
   begin
      case Indirect.Kind is
         when Iir_Value_Array =>
            Res := Ghdl_I64'First;
            for I in Indirect.Val_Array.V'Range loop
               Res := Ghdl_I64'Max
                 (Res, Execute_Read_Signal_Last (Indirect.Val_Array.V (I),
                                                 Kind));
            end loop;
            return Res;
         when Iir_Value_Signal =>
            case Kind is
               when Read_Last_Event =>
                  return Ghdl_I64 (Indirect.Sig.Last_Event);
               when Read_Last_Active =>
                  return Ghdl_I64 (Indirect.Sig.Last_Active);
            end case;
         when others =>
            raise Internal_Error;
      end case;
   end Execute_Read_Signal_Last;

   function Execute_Last_Event_Attribute (Indirect: Iir_Value_Literal_Acc)
                                         return Ghdl_I64 is
   begin
      return Execute_Read_Signal_Last (Indirect, Read_Last_Event);
   end Execute_Last_Event_Attribute;

   function Execute_Last_Active_Attribute (Indirect: Iir_Value_Literal_Acc)
                                          return Ghdl_I64 is
   begin
      return Execute_Read_Signal_Last (Indirect, Read_Last_Active);
   end Execute_Last_Active_Attribute;

   function Execute_Signal_Value (Indirect: Iir_Value_Literal_Acc)
     return Iir_Value_Literal_Acc
   is
      Res: Iir_Value_Literal_Acc;
   begin
      case Indirect.Kind is
         when Iir_Value_Array =>
            Res := Copy_Array_Bound (Indirect);
            for I in Indirect.Val_Array.V'Range loop
               Res.Val_Array.V (I) :=
                 Execute_Signal_Value (Indirect.Val_Array.V (I));
            end loop;
            return Res;
         when Iir_Value_Record =>
            Res := Create_Record_Value (Indirect.Val_Record.Len);
            for I in Indirect.Val_Record.V'Range loop
               Res.Val_Record.V (I) :=
                 Execute_Signal_Value (Indirect.Val_Record.V (I));
            end loop;
            return Res;
         when Iir_Value_Signal =>
            return Value_To_Iir_Value (Indirect.Sig.Mode, Indirect.Sig.Value);
         when others =>
            raise Internal_Error;
      end case;
   end Execute_Signal_Value;

   procedure Assign_Value_To_Array_Signal
     (Instance: Block_Instance_Acc;
      Target: Iir_Value_Literal_Acc;
      Transactions: Transaction_Type)
   is
      Sub_Trans : Transaction_Type (Transactions.Len);
   begin
      Sub_Trans.Stmt := Transactions.Stmt;
      Sub_Trans.Reject := Transactions.Reject;

      for J in Target.Val_Array.V'Range loop
         for K in Transactions.Els'Range loop
            declare
               T : Transaction_El_Type renames Transactions.Els (K);
               S : Transaction_El_Type renames Sub_Trans.Els (K);
            begin
               S.After := T.After;

               if T.Value = null then
                  S.Value := null;
               else
                  S.Value := T.Value.Val_Array.V (J);
               end if;
            end;
         end loop;

         Assign_Value_To_Signal
           (Instance, Target.Val_Array.V (J), Sub_Trans);
      end loop;
   end Assign_Value_To_Array_Signal;

   procedure Assign_Value_To_Record_Signal
     (Instance: Block_Instance_Acc;
      Target: Iir_Value_Literal_Acc;
      Transactions: Transaction_Type)
   is
      Sub_Trans : Transaction_Type (Transactions.Len);
   begin
      Sub_Trans.Stmt := Transactions.Stmt;
      Sub_Trans.Reject := Transactions.Reject;

      for J in Target.Val_Record.V'Range loop
         for K in Transactions.Els'Range loop
            declare
               T : Transaction_El_Type renames Transactions.Els (K);
               S : Transaction_El_Type renames Sub_Trans.Els (K);
            begin
               S.After := T.After;

               if T.Value = null then
                  S.Value := null;
               else
                  S.Value := T.Value.Val_Record.V (J);
               end if;
            end;
         end loop;

         Assign_Value_To_Signal
           (Instance, Target.Val_Record.V (J), Sub_Trans);
      end loop;
   end Assign_Value_To_Record_Signal;

   procedure Assign_Value_To_Scalar_Signal
     (Instance: Block_Instance_Acc;
      Target: Iir_Value_Literal_Acc;
      Transactions: Transaction_Type)
   is
      pragma Unreferenced (Instance);
      use Grt.Signals;
   begin
      declare
         El : Transaction_El_Type renames Transactions.Els (1);
      begin
         if El.Value = null then
            Ghdl_Signal_Start_Assign_Null
              (Target.Sig, Transactions.Reject, El.After);
            if Transactions.Els'Last /= 1 then
               raise Internal_Error;
            end if;
            return;
         end if;

         --  FIXME: null transaction, check constraints.
         case Iir_Value_Scalars (El.Value.Kind) is
            when Iir_Value_B1 =>
               Ghdl_Signal_Start_Assign_B1
                 (Target.Sig, Transactions.Reject, El.Value.B1, El.After);
            when Iir_Value_E32 =>
               Ghdl_Signal_Start_Assign_E32
                 (Target.Sig, Transactions.Reject, El.Value.E32, El.After);
            when Iir_Value_I64 =>
               Ghdl_Signal_Start_Assign_I64
                 (Target.Sig, Transactions.Reject, El.Value.I64, El.After);
            when Iir_Value_F64 =>
               Ghdl_Signal_Start_Assign_F64
                 (Target.Sig, Transactions.Reject, El.Value.F64, El.After);
         end case;
      end;

      for I in 2 .. Transactions.Els'Last loop
         declare
            El : Transaction_El_Type renames Transactions.Els (I);
         begin
            case Iir_Value_Scalars (El.Value.Kind) is
               when Iir_Value_B1 =>
                  Ghdl_Signal_Next_Assign_B1
                    (Target.Sig, El.Value.B1, El.After);
               when Iir_Value_E32 =>
                  Ghdl_Signal_Next_Assign_E32
                    (Target.Sig, El.Value.E32, El.After);
               when Iir_Value_I64 =>
                  Ghdl_Signal_Next_Assign_I64
                    (Target.Sig, El.Value.I64, El.After);
               when Iir_Value_F64 =>
                  Ghdl_Signal_Next_Assign_F64
                    (Target.Sig, El.Value.F64, El.After);
            end case;
         end;
      end loop;
   end Assign_Value_To_Scalar_Signal;

   procedure Assign_Value_To_Signal
     (Instance: Block_Instance_Acc;
      Target: Iir_Value_Literal_Acc;
      Transaction: Transaction_Type)
   is
   begin
      case Target.Kind is
         when Iir_Value_Array =>
            Assign_Value_To_Array_Signal
              (Instance, Target, Transaction);
         when Iir_Value_Record =>
            Assign_Value_To_Record_Signal
              (Instance, Target, Transaction);
         when Iir_Value_Signal =>
            Assign_Value_To_Scalar_Signal
              (Instance, Target, Transaction);
         when Iir_Value_Scalars
           | Iir_Value_Range
           | Iir_Value_File
           | Iir_Value_Access
           | Iir_Value_Protected
           | Iir_Value_Quantity
           | Iir_Value_Terminal =>
            raise Internal_Error;
      end case;
   end Assign_Value_To_Signal;

   procedure Disconnect_Signal (Sig : Iir_Value_Literal_Acc) is
   begin
      case Sig.Kind is
         when Iir_Value_Array =>
            for I in Sig.Val_Array.V'Range loop
               Disconnect_Signal (Sig.Val_Array.V (I));
            end loop;
         when Iir_Value_Record =>
            for I in Sig.Val_Array.V'Range loop
               Disconnect_Signal (Sig.Val_Record.V (I));
            end loop;
         when Iir_Value_Signal =>
            Grt.Signals.Ghdl_Signal_Disconnect (Sig.Sig);
         when others =>
            raise Internal_Error;
      end case;
   end Disconnect_Signal;

   --  Call Ghdl_Process_Wait_Add_Sensitivity for each scalar subelement of
   --  SIG.
   procedure Wait_Add_Sensitivity (Sig: Iir_Value_Literal_Acc)
   is
   begin
      case Sig.Kind is
         when Iir_Value_Signal =>
            Grt.Processes.Ghdl_Process_Wait_Add_Sensitivity (Sig.Sig);
         when Iir_Value_Array =>
            for I in Sig.Val_Array.V'Range loop
               Wait_Add_Sensitivity (Sig.Val_Array.V (I));
            end loop;
         when Iir_Value_Record =>
            for I in Sig.Val_Record.V'Range loop
               Wait_Add_Sensitivity (Sig.Val_Record.V (I));
            end loop;
         when others =>
            raise Internal_Error;
      end case;
   end Wait_Add_Sensitivity;

   -- Return true if the process should be suspended.
   function Execute_Wait_Statement (Instance : Block_Instance_Acc;
                                    Stmt: Iir_Wait_Statement)
                                   return Boolean
   is
      Expr: Iir;
      El : Iir;
      List: Iir_List;
      Res: Iir_Value_Literal_Acc;
      Status : Boolean;
      Marker : Mark_Type;
   begin
      if not Instance.In_Wait_Flag then
         Mark (Marker, Expr_Pool);

         -- LRM93 8.1
         -- The execution of a wait statement causes the time expression to
         -- be evaluated to determine the timeout interval.
         Expr := Get_Timeout_Clause (Stmt);
         if Expr /= Null_Iir then
            Res := Execute_Expression (Instance, Expr);
            Grt.Processes.Ghdl_Process_Wait_Set_Timeout (Std_Time (Res.I64));
         end if;

         -- LRM93 8.1
         -- The suspended process may also resume as a result of an event
         -- occuring on any signal in the sensitivity set of the wait
         -- statement.
         List := Get_Sensitivity_List (Stmt);
         if List /= Null_Iir_List then
            for J in Natural loop
               El := Get_Nth_Element (List, J);
               exit when El = Null_Iir;
               Wait_Add_Sensitivity (Execute_Name (Instance, El, True));
            end loop;
         end if;

         --  LRM93 8.1
         --  It also causes the execution of the corresponding process
         --  statement to be suspended.
         Grt.Processes.Ghdl_Process_Wait_Wait;
         Instance.In_Wait_Flag := True;
         Release (Marker, Expr_Pool);
         return True;
      else
         --  LRM93 8.1
         --  The suspended process will resume, at the latest, immediately
         --  after the timeout interval has expired.
         if not Grt.Processes.Ghdl_Process_Wait_Has_Timeout then
            --  Compute the condition clause only if the timeout has not
            --  expired.

            -- LRM93 8.1
            -- If such an event occurs, the condition in the condition clause
            -- is evaluated.
            --
            -- if no condition clause appears, the condition clause until true
            -- is assumed.
            Status :=
              Execute_Condition (Instance, Get_Condition_Clause (Stmt));
            if not Status then
               -- LRM93 8.1
               -- If the value of the condition is FALSE, the process will
               -- re-suspend.
               -- Such re-suspension does not involve the recalculation of
               -- the timeout interval.
               Grt.Processes.Ghdl_Process_Wait_Wait;
               return True;
            end if;
         end if;

         -- LRM93 8.1
         --   If the value of the condition is TRUE, the process will resume.
         -- next statement.
         Grt.Processes.Ghdl_Process_Wait_Close;

         Instance.In_Wait_Flag := False;
         return False;
      end if;
   end Execute_Wait_Statement;

   function To_Instance_Acc is new Ada.Unchecked_Conversion
     (System.Address, Grt.Stacks.Instance_Acc);

   procedure Process_Executer (Self : Grt.Stacks.Instance_Acc);
   pragma Convention (C, Process_Executer);

   procedure Process_Executer (Self : Grt.Stacks.Instance_Acc)
   is
      function To_Process_State_Acc is new Ada.Unchecked_Conversion
        (Grt.Stacks.Instance_Acc, Process_State_Acc);

      Process : Process_State_Acc renames
        To_Process_State_Acc (Self);
   begin
      --  For debugger
      Current_Process := Process;

      Instance_Pool := Process.Pool'Access;

      if Trace_Simulation then
         Put (" run process: ");
         Disp_Instance_Name (Process.Top_Instance);
         Put_Line (" (" & Disp_Location (Process.Proc) & ")");
      end if;

      Execute_Sequential_Statements (Process);

      --  Sanity checks.
      if not Is_Empty (Expr_Pool) then
         raise Internal_Error;
      end if;

      case Get_Kind (Process.Proc) is
         when Iir_Kind_Sensitized_Process_Statement =>
            if Process.Instance.In_Wait_Flag then
               raise Internal_Error;
            end if;
            if Process.Instance.Stmt = Null_Iir then
               Process.Instance.Stmt :=
                 Get_Sequential_Statement_Chain (Process.Proc);
            end if;
         when Iir_Kind_Process_Statement =>
            if not Process.Instance.In_Wait_Flag then
               raise Internal_Error;
            end if;
         when others =>
            raise Internal_Error;
      end case;

      Instance_Pool := null;
      Current_Process := null;
   end Process_Executer;

   type Resolver_Read_Mode is (Read_Port, Read_Driver);

   function Resolver_Read_Value (Sig : Iir_Value_Literal_Acc;
                                 Mode : Resolver_Read_Mode;
                                 Index : Ghdl_Index_Type)
                                return Iir_Value_Literal_Acc
   is
      use Grt.Signals;
      Val : Ghdl_Value_Ptr;
      Res : Iir_Value_Literal_Acc;
   begin
      case Sig.Kind is
         when Iir_Value_Array =>
            Res := Copy_Array_Bound (Sig);
            for I in Sig.Val_Array.V'Range loop
               Res.Val_Array.V (I) :=
                 Resolver_Read_Value (Sig.Val_Array.V (I), Mode, Index);
            end loop;
         when Iir_Value_Record =>
            Res := Create_Record_Value (Sig.Val_Record.Len);
            for I in Sig.Val_Record.V'Range loop
               Res.Val_Record.V (I) :=
                 Resolver_Read_Value (Sig.Val_Record.V (I), Mode, Index);
            end loop;
         when Iir_Value_Signal =>
            case Mode is
               when Read_Port =>
                  Val := Ghdl_Signal_Read_Port (Sig.Sig, Index);
               when Read_Driver =>
                  Val := Ghdl_Signal_Read_Driver (Sig.Sig, Index);
            end case;
            Res := Value_To_Iir_Value (Sig.Sig.Mode, Val.all);
         when others =>
            raise Internal_Error;
      end case;
      return Res;
   end Resolver_Read_Value;

   procedure Resolution_Proc (Instance_Addr : System.Address;
                              Val : System.Address;
                              Bool_Vec : System.Address;
                              Vec_Len : Ghdl_Index_Type;
                              Nbr_Drv : Ghdl_Index_Type;
                              Nbr_Ports : Ghdl_Index_Type)
   is
      pragma Unreferenced (Val);

      Instance : Resolv_Instance_Type;
      pragma Import (Ada, Instance);
      for Instance'Address use Instance_Addr;

      type Bool_Array is array (1 .. Nbr_Drv) of Boolean;
      Vec : Bool_Array;
      pragma Import (Ada, Vec);
      for Vec'Address use Bool_Vec;
      Off : Iir_Index32;

      Arr : Iir_Value_Literal_Acc;
      Arr_Type : constant Iir :=
        Get_Type (Get_Interface_Declaration_Chain (Instance.Func));

      Res : Iir_Value_Literal_Acc;

      Len : constant Iir_Index32 := Iir_Index32 (Vec_Len + Nbr_Ports);
      Instance_Mark, Expr_Mark : Mark_Type;
   begin
      pragma Assert (Instance_Pool = null);
      Instance_Pool := Global_Pool'Access;
      Mark (Instance_Mark, Instance_Pool.all);
      Mark (Expr_Mark, Expr_Pool);
      Current_Process := No_Process;

      Arr := Create_Array_Value (Len, 1);
      Arr.Bounds.D (1) := Create_Bounds_From_Length
        (Instance.Block,
         Get_First_Element (Get_Index_Subtype_List (Arr_Type)),
         Len);

      --  First ports
      for I in 1 .. Nbr_Ports loop
         Arr.Val_Array.V (Iir_Index32 (I)) := Resolver_Read_Value
           (Instance.Sig, Read_Port, I - 1);
      end loop;

      --  Then drivers.
      Off := Iir_Index32 (Nbr_Ports) + 1;
      for I in 1 .. Nbr_Drv loop
         if Vec (I) then
            Arr.Val_Array.V (Off) := Resolver_Read_Value
              (Instance.Sig, Read_Driver, I - 1);
            Off := Off + 1;
         end if;
      end loop;

      --  Call resolution function.
      Res := Execute_Resolution_Function (Instance.Block, Instance.Func, Arr);

      --  Set driving value.
      Execute_Write_Signal (Instance.Sig, Res, Write_Signal_Driving_Value);

      Release (Instance_Mark, Instance_Pool.all);
      Release (Expr_Mark, Expr_Pool);
      Instance_Pool := null;
   end Resolution_Proc;

   type Convert_Mode is (Convert_In, Convert_Out);

   type Convert_Instance_Type is record
      Mode : Convert_Mode;
      Instance : Block_Instance_Acc;
      Func : Iir;
      Src : Iir_Value_Literal_Acc;
      Dst : Iir_Value_Literal_Acc;
   end record;

   type Convert_Instance_Acc is access Convert_Instance_Type;

   procedure Conversion_Proc (Data : System.Address) is
      Conv : Convert_Instance_Type;
      pragma Import (Ada, Conv);
      for Conv'Address use Data;

      Src : Iir_Value_Literal_Acc;
      Dst : Iir_Value_Literal_Acc;

      Expr_Mark : Mark_Type;
   begin
      pragma Assert (Instance_Pool = null);
      Instance_Pool := Global_Pool'Access;
      Mark (Expr_Mark, Expr_Pool);
      Current_Process := No_Process;

      case Conv.Mode is
         when Convert_In =>
            Src := Execute_Read_Signal_Value
              (Conv.Src, Read_Signal_Effective_Value);
         when Convert_Out =>
            Src := Execute_Read_Signal_Value
              (Conv.Src, Read_Signal_Driving_Value);
      end case;

      Dst := Execute_Assoc_Conversion (Conv.Instance, Conv.Func, Src);

      Check_Bounds (Conv.Dst, Dst, Conv.Func);

      case Conv.Mode is
         when Convert_In =>
            Execute_Write_Signal (Conv.Dst, Dst, Write_Signal_Effective_Value);
         when Convert_Out =>
            Execute_Write_Signal (Conv.Dst, Dst, Write_Signal_Driving_Value);
      end case;

      Release (Expr_Mark, Expr_Pool);
      Instance_Pool := null;
   end Conversion_Proc;

   function Guard_Func (Data : System.Address) return Ghdl_B1
   is
      Guard : Guard_Instance_Type;
      pragma Import (Ada, Guard);
      for Guard'Address use Data;

      Val : Boolean;

      Prev_Instance_Pool : Areapool_Acc;
   begin
      pragma Assert (Instance_Pool = null
                       or else Instance_Pool = Global_Pool'Access);
      Prev_Instance_Pool := Instance_Pool;

      Instance_Pool := Global_Pool'Access;
      Current_Process := No_Process;

      Val := Execute_Condition
        (Guard.Instance, Get_Guard_Expression (Guard.Guard));

      Instance_Pool := Prev_Instance_Pool;

      return Ghdl_B1'Val (Boolean'Pos (Val));
   end Guard_Func;

   -- Add a driver for signal designed by VAL (via index field) for instance
   -- INSTANCE of process PROC.
   -- FIXME: default value.
   procedure Add_Source
     (Instance: Block_Instance_Acc; Val: Iir_Value_Literal_Acc; Proc: Iir)
   is
   begin
      case Val.Kind is
         when Iir_Value_Signal =>
            if Proc = Null_Iir then
               -- Can this happen ?
               raise Internal_Error;
            end if;
            Grt.Signals.Ghdl_Process_Add_Driver (Val.Sig);
         when Iir_Value_Array =>
            for I in Val.Val_Array.V'Range loop
               Add_Source (Instance, Val.Val_Array.V (I), Proc);
            end loop;
         when Iir_Value_Record =>
            for I in Val.Val_Record.V'Range loop
               Add_Source (Instance, Val.Val_Record.V (I), Proc);
            end loop;
         when others =>
            raise Internal_Error;
      end case;
   end Add_Source;

   --  Add drivers for process PROC.
   --  Note: this is done recursively on the callees of PROC.
   procedure Elaborate_Drivers (Instance: Block_Instance_Acc; Proc: Iir)
   is
      Driver_List: Iir_List;
      El: Iir;
      Val: Iir_Value_Literal_Acc;
      Marker : Mark_Type;
   begin
      if Trace_Drivers then
         Ada.Text_IO.Put ("Drivers for ");
         Disp_Instance_Name (Instance);
         Ada.Text_IO.Put_Line (": " & Disp_Node (Proc));
      end if;

      Driver_List := Trans_Analyzes.Extract_Drivers (Proc);

      -- Some processes have no driver list (assertion).
      if Driver_List = Null_Iir_List then
         return;
      end if;

      for I in Natural loop
         El := Get_Nth_Element (Driver_List, I);
         exit when El = Null_Iir;
         if Trace_Drivers then
            Put_Line (' ' & Disp_Node (El));
         end if;

         Mark (Marker, Expr_Pool);
         Val := Execute_Name (Instance, El, True);
         Add_Source (Instance, Val, Proc);
         Release (Marker, Expr_Pool);
      end loop;
   end Elaborate_Drivers;

   --  Call Ghdl_Process_Add_Sensitivity for each scalar subelement of
   --  SIG.
   procedure Process_Add_Sensitivity (Sig: Iir_Value_Literal_Acc) is
   begin
      case Sig.Kind is
         when Iir_Value_Signal =>
            Grt.Processes.Ghdl_Process_Add_Sensitivity (Sig.Sig);
         when Iir_Value_Array =>
            for I in Sig.Val_Array.V'Range loop
               Process_Add_Sensitivity (Sig.Val_Array.V (I));
            end loop;
         when Iir_Value_Record =>
            for I in Sig.Val_Record.V'Range loop
               Process_Add_Sensitivity (Sig.Val_Record.V (I));
            end loop;
         when others =>
            raise Internal_Error;
      end case;
   end Process_Add_Sensitivity;

   procedure Create_Processes
   is
      use Grt.Processes;
      El : Iir;
      Instance : Block_Instance_Acc;
      Instance_Grt : Grt.Stacks.Instance_Acc;
   begin
      Processes_State := new Process_State_Array (1 .. Processes_Table.Last);

      for I in Processes_Table.First .. Processes_Table.Last loop
         Instance := Processes_Table.Table (I);
         El := Instance.Label;

         Instance_Pool := Processes_State (I).Pool'Access;
         Instance.Stmt := Get_Sequential_Statement_Chain (El);

         Processes_State (I).Top_Instance := Instance;
         Processes_State (I).Proc := El;
         Processes_State (I).Instance := Instance;

         Current_Process := Processes_State (I)'Access;
         Instance_Grt := To_Instance_Acc (Processes_State (I)'Address);
         case Get_Kind (El) is
            when Iir_Kind_Sensitized_Process_Statement =>
               if Get_Postponed_Flag (El) then
                  Ghdl_Postponed_Sensitized_Process_Register
                    (Instance_Grt,
                     Process_Executer'Access,
                     null, System.Null_Address);
               else
                  Ghdl_Sensitized_Process_Register
                    (Instance_Grt,
                     Process_Executer'Access,
                     null, System.Null_Address);
               end if;

               --  Register sensitivity.
               declare
                  Sig_List : Iir_List;
                  Sig : Iir;
                  Marker : Mark_Type;
               begin
                  Sig_List := Get_Sensitivity_List (El);
                  for J in Natural loop
                     Sig := Get_Nth_Element (Sig_List, J);
                     exit when Sig = Null_Iir;
                     Mark (Marker, Expr_Pool);
                     Process_Add_Sensitivity
                       (Execute_Name (Instance, Sig, True));
                     Release (Marker, Expr_Pool);
                  end loop;
               end;

            when Iir_Kind_Process_Statement =>
               if Get_Postponed_Flag (El) then
                  Ghdl_Postponed_Process_Register
                    (Instance_Grt,
                     Process_Executer'Access,
                     null, System.Null_Address);
               else
                  Ghdl_Process_Register
                    (Instance_Grt,
                     Process_Executer'Access,
                     null, System.Null_Address);
               end if;

            when others =>
               raise Internal_Error;
         end case;

         --  LRM93 §12.4.4  Other Concurrent Statements
         --  All other concurrent statements are either process
         --  statements or are statements for which there is an
         --  equivalent process statement.
         --  Elaboration of a process statement proceeds as follows:
         --  1.  The process declarative part is elaborated.
         Elaborate_Declarative_Part
           (Instance, Get_Declaration_Chain (El));

         --  2.  The drivers required by the process statement
         --      are created.
         --  3.  The initial transaction defined by the default value
         --      associated with each scalar signal driven by the
         --      process statement is inserted into the corresponding
         --      driver.
         --  FIXME: do it for drivers in called subprograms too.
         Elaborate_Drivers (Instance, El);

         if not Is_Empty (Expr_Pool) then
            raise Internal_Error;
         end if;

         --  Elaboration of all concurrent signal assignment
         --  statements and concurrent assertion statements consists
         --  of the construction of the equivalent process statement
         --  followed by the elaboration of the equivalent process
         --  statement.
         --  [GHDL:  this is done by canonicalize.  ]

         --  FIXME: check passive statements,
         --  check no wait statement in sensitized processes.

         Instance_Pool := null;
      end loop;

      if Trace_Simulation then
         Disp_Signals_Value;
      end if;
   end Create_Processes;

   --  Configuration for the whole design
   Top_Config : Iir_Design_Unit;

   --  Elaborate the design
   procedure Ghdl_Elaborate;
   pragma Export (C, Ghdl_Elaborate, "__ghdl_ELABORATE");

   procedure Set_Disconnection (Val : Iir_Value_Literal_Acc;
                                Time : Iir_Value_Time)
   is
   begin
      case Val.Kind is
         when Iir_Value_Signal =>
            Grt.Signals.Ghdl_Signal_Set_Disconnect (Val.Sig, Std_Time (Time));
         when Iir_Value_Record =>
            for I in Val.Val_Record.V'Range loop
               Set_Disconnection (Val.Val_Record.V (I), Time);
            end loop;
         when Iir_Value_Array =>
            for I in Val.Val_Array.V'Range loop
               Set_Disconnection (Val.Val_Array.V (I), Time);
            end loop;
         when others =>
            raise Internal_Error;
      end case;
   end Set_Disconnection;

   procedure Create_Disconnections is
   begin
      for I in Disconnection_Table.First .. Disconnection_Table.Last loop
         declare
            E : Disconnection_Entry renames Disconnection_Table.Table (I);
         begin
            Set_Disconnection (E.Sig, E.Time);
         end;
      end loop;
   end Create_Disconnections;

   type Connect_Mode is (Connect_Source, Connect_Effective);

   -- Add a driving value PORT to signal SIG, ie: PORT is a source for SIG.
   -- As a side effect, this connect the signal SIG with the port PORT.
   -- PORT is the formal, while SIG is the actual.
   procedure Connect (Sig: Iir_Value_Literal_Acc;
                      Port: Iir_Value_Literal_Acc;
                      Mode : Connect_Mode)
   is
   begin
      case Sig.Kind is
         when Iir_Value_Array =>
            if Port.Kind /= Sig.Kind then
               raise Internal_Error;
            end if;

            if Sig.Val_Array.Len /= Port.Val_Array.Len then
               raise Internal_Error;
            end if;
            for I in Sig.Val_Array.V'Range loop
               Connect (Sig.Val_Array.V (I), Port.Val_Array.V (I), Mode);
            end loop;
            return;
         when Iir_Value_Record =>
            if Port.Kind /= Sig.Kind then
               raise Internal_Error;
            end if;
            if Sig.Val_Record.Len /= Port.Val_Record.Len then
               raise Internal_Error;
            end if;
            for I in Sig.Val_Record.V'Range loop
               Connect (Sig.Val_Record.V (I), Port.Val_Record.V (I), Mode);
            end loop;
            return;
         when Iir_Value_Signal =>
            case Port.Kind is
               when Iir_Value_Signal =>
                  -- Here, SIG and PORT are simple signals (not composite).
                  -- PORT is a source for SIG.
                  case Mode is
                     when Connect_Source =>
                        Grt.Signals.Ghdl_Signal_Add_Source
                          (Sig.Sig, Port.Sig);
                     when Connect_Effective =>
                        Grt.Signals.Ghdl_Signal_Effective_Value
                          (Port.Sig, Sig.Sig);
                  end case;
               when Iir_Value_Access
                 | Iir_Value_File
                 | Iir_Value_Range
                 | Iir_Value_Scalars --  FIXME: by value
                 | Iir_Value_Record
                 | Iir_Value_Array
                 | Iir_Value_Protected
                 | Iir_Value_Quantity
                 | Iir_Value_Terminal =>
                  --  These cannot be driving value for a signal.
                  raise Internal_Error;
            end case;
         when Iir_Value_E32 =>
            if Mode = Connect_Source then
               raise Internal_Error;
            end if;
            Grt.Signals.Ghdl_Signal_Associate_E32 (Port.Sig, Sig.E32);
         when Iir_Value_I64 =>
            if Mode = Connect_Source then
               raise Internal_Error;
            end if;
            Grt.Signals.Ghdl_Signal_Associate_I64 (Port.Sig, Sig.I64);
         when Iir_Value_B1 =>
            if Mode = Connect_Source then
               raise Internal_Error;
            end if;
            Grt.Signals.Ghdl_Signal_Associate_B1 (Port.Sig, Sig.B1);
         when others =>
            raise Internal_Error;
      end case;
   end Connect;

   function Get_Leftest_Signal (Val : Iir_Value_Literal_Acc)
                               return Iir_Value_Literal_Acc is
   begin
      case Val.Kind is
         when Iir_Value_Signal =>
            return Val;
         when Iir_Value_Array =>
            return Get_Leftest_Signal (Val.Val_Array.V (1));
         when Iir_Value_Record =>
            return Get_Leftest_Signal (Val.Val_Record.V (1));
         when others =>
            raise Internal_Error;
      end case;
   end Get_Leftest_Signal;

   procedure Add_Conversion (Conv : Convert_Instance_Acc)
   is
      Src_Left : Grt.Signals.Ghdl_Signal_Ptr;
      Src_Len : Ghdl_Index_Type;
      Dst_Left : Grt.Signals.Ghdl_Signal_Ptr;
      Dst_Len : Ghdl_Index_Type;
   begin
      Conv.Src := Unshare_Bounds (Conv.Src, Instance_Pool);
      Conv.Dst := Unshare_Bounds (Conv.Dst, Instance_Pool);

      Src_Left := Get_Leftest_Signal (Conv.Src).Sig;
      Src_Len := Ghdl_Index_Type (Get_Nbr_Of_Scalars (Conv.Src));

      Dst_Left := Get_Leftest_Signal (Conv.Dst).Sig;
      Dst_Len := Ghdl_Index_Type (Get_Nbr_Of_Scalars (Conv.Dst));

      case Conv.Mode is
         when Convert_In =>
            Grt.Signals.Ghdl_Signal_In_Conversion (Conversion_Proc'Address,
                                                   Conv.all'Address,
                                                   Src_Left, Src_Len,
                                                   Dst_Left, Dst_Len);
         when Convert_Out =>
            Grt.Signals.Ghdl_Signal_Out_Conversion (Conversion_Proc'Address,
                                                    Conv.all'Address,
                                                    Src_Left, Src_Len,
                                                    Dst_Left, Dst_Len);
      end case;
   end Add_Conversion;

   function Create_Shadow_Signal (Sig : Iir_Value_Literal_Acc)
                                 return Iir_Value_Literal_Acc
   is
   begin
      case Sig.Kind is
         when Iir_Value_Signal =>
            case Sig.Sig.Mode is
               when Mode_I64 =>
                  return Create_Signal_Value
                    (Grt.Signals.Ghdl_Create_Signal_I64
                       (0, null, System.Null_Address));
               when Mode_B1 =>
                  return Create_Signal_Value
                    (Grt.Signals.Ghdl_Create_Signal_B1
                       (False, null, System.Null_Address));
               when Mode_E32 =>
                  return Create_Signal_Value
                    (Grt.Signals.Ghdl_Create_Signal_E32
                       (0, null, System.Null_Address));
               when Mode_F64 =>
                  return Create_Signal_Value
                    (Grt.Signals.Ghdl_Create_Signal_F64
                       (0.0, null, System.Null_Address));
               when Mode_E8
                 | Mode_I32 =>
                  raise Internal_Error;
            end case;
         when Iir_Value_Array =>
            declare
               Res : Iir_Value_Literal_Acc;
            begin
               Res := Unshare_Bounds (Sig, Instance_Pool);
               for I in Res.Val_Array.V'Range loop
                  Res.Val_Array.V (I) :=
                    Create_Shadow_Signal (Sig.Val_Array.V (I));
               end loop;
               return Res;
            end;
         when Iir_Value_Record =>
            declare
               Res : Iir_Value_Literal_Acc;
            begin
               Res := Create_Record_Value
                 (Sig.Val_Record.Len, Instance_Pool);
               for I in Res.Val_Record.V'Range loop
                  Res.Val_Record.V (I) :=
                    Create_Shadow_Signal (Sig.Val_Record.V (I));
               end loop;
               return Res;
            end;
         when Iir_Value_Scalars
           | Iir_Value_Access
           | Iir_Value_Range
           | Iir_Value_Protected
           | Iir_Value_Terminal
           | Iir_Value_Quantity
           | Iir_Value_File =>
            raise Internal_Error;
      end case;
   end Create_Shadow_Signal;

   procedure Set_Connect
     (Formal_Instance : Block_Instance_Acc;
      Formal_Expr : Iir_Value_Literal_Acc;
      Local_Instance : Block_Instance_Acc;
      Local_Expr : Iir_Value_Literal_Acc;
      Assoc : Iir_Association_Element_By_Expression)
   is
      pragma Unreferenced (Formal_Instance);
      Formal : constant Iir := Get_Formal (Assoc);
      Inter : constant Iir := Get_Association_Interface (Assoc);
   begin
      if False and Trace_Elaboration then
         Put ("connect formal ");
         Put (Iir_Mode'Image (Get_Mode (Inter)));
         Put (" ");
         Disp_Iir_Value (Formal_Expr, Get_Type (Formal));
         Put (" with actual ");
         Disp_Iir_Value (Local_Expr, Get_Type (Get_Actual (Assoc)));
         New_Line;
      end if;

      case Get_Mode (Inter) is
         when Iir_Out_Mode
           | Iir_Inout_Mode
           | Iir_Buffer_Mode
           | Iir_Linkage_Mode =>
            --  FORMAL_EXPR is a source for LOCAL_EXPR.
            declare
               Out_Conv : constant Iir := Get_Out_Conversion (Assoc);
               Src : Iir_Value_Literal_Acc;
            begin
               if Out_Conv /= Null_Iir then
                  Src := Create_Shadow_Signal (Local_Expr);
                  Add_Conversion
                    (new Convert_Instance_Type'
                       (Mode => Convert_Out,
                        Instance => Local_Instance,
                        Func => Out_Conv,
                        Src => Formal_Expr,
                        Dst => Src));
               else
                  Src := Formal_Expr;
               end if;
               --  LRM93 §12.6.2
               --  A signal is said to be active [...] if one of its source
               --  is active.
               Connect (Local_Expr, Src, Connect_Source);
            end;

         when Iir_In_Mode =>
            null;
         when Iir_Unknown_Mode =>
            raise Internal_Error;
      end case;

      case Get_Mode (Inter) is
         when Iir_In_Mode
           | Iir_Inout_Mode
           | Iir_Buffer_Mode
           | Iir_Linkage_Mode =>
            declare
               In_Conv : constant Iir := Get_In_Conversion (Assoc);
               Src : Iir_Value_Literal_Acc;
            begin
               if In_Conv /= Null_Iir then
                  Src := Create_Shadow_Signal (Formal_Expr);
                  Add_Conversion
                    (new Convert_Instance_Type'
                       (Mode => Convert_In,
                        Instance => Local_Instance,
                        Func => Get_Implementation (In_Conv),
                        Src => Local_Expr,
                        Dst => Src));
               else
                  Src := Local_Expr;
               end if;
               Connect (Src, Formal_Expr, Connect_Effective);
            end;
         when Iir_Out_Mode =>
            null;
         when Iir_Unknown_Mode =>
            raise Internal_Error;
      end case;
   end Set_Connect;

   procedure Create_Connects is
   begin
      --  New signals may be created (because of conversions).
      Instance_Pool := Global_Pool'Access;

      for I in Connect_Table.First .. Connect_Table.Last loop
         declare
            E : Connect_Entry renames Connect_Table.Table (I);
         begin
            Set_Connect (E.Formal_Instance, E.Formal,
                         E.Actual_Instance, E.Actual,
                         E.Assoc);
         end;
      end loop;

      Instance_Pool := null;
   end Create_Connects;

   procedure Create_Guard_Signal
     (Instance : Block_Instance_Acc;
      Sig_Guard : Iir_Value_Literal_Acc;
      Guard : Iir)
   is
      procedure Add_Guard_Sensitivity (Sig : Iir_Value_Literal_Acc) is
      begin
         case Sig.Kind is
            when Iir_Value_Signal =>
               Grt.Signals.Ghdl_Signal_Guard_Dependence (Sig.Sig);
            when Iir_Value_Array =>
               for I in Sig.Val_Array.V'Range loop
                  Add_Guard_Sensitivity (Sig.Val_Array.V (I));
               end loop;
            when Iir_Value_Record =>
               for I in Sig.Val_Record.V'Range loop
                  Add_Guard_Sensitivity (Sig.Val_Record.V (I));
               end loop;
            when others =>
               raise Internal_Error;
         end case;
      end Add_Guard_Sensitivity;

      Dep_List : Iir_List;
      Dep : Iir;
      Data : Guard_Instance_Acc;
   begin
      Data := new Guard_Instance_Type'(Instance => Instance,
                                       Guard => Guard);
      Sig_Guard.Sig := Grt.Signals.Ghdl_Signal_Create_Guard
        (Data.all'Address, Guard_Func'Access);
      Dep_List := Get_Guard_Sensitivity_List (Guard);
      for I in Natural loop
         Dep := Get_Nth_Element (Dep_List, I);
         exit when Dep = Null_Iir;
         Add_Guard_Sensitivity (Execute_Name (Instance, Dep, True));
      end loop;

      --  FIXME: free mem
   end Create_Guard_Signal;

   procedure Create_Implicit_Signal (Sig : Iir_Value_Literal_Acc;
                                     Time : Ghdl_I64;
                                     Prefix : Iir_Value_Literal_Acc;
                                     Kind : Signal_Type_Kind)
   is
      procedure Register_Prefix (Pfx : Iir_Value_Literal_Acc) is
      begin
         case Pfx.Kind is
            when Iir_Value_Signal =>
               Grt.Signals.Ghdl_Signal_Attribute_Register_Prefix (Pfx.Sig);
            when Iir_Value_Array =>
               for I in Pfx.Val_Array.V'Range loop
                  Register_Prefix (Pfx.Val_Array.V (I));
               end loop;
            when Iir_Value_Record =>
               for I in Pfx.Val_Record.V'Range loop
                  Register_Prefix (Pfx.Val_Record.V (I));
               end loop;
            when others =>
               raise Internal_Error;
         end case;
      end Register_Prefix;
   begin
      case Kind is
         when Implicit_Stable =>
            Sig.Sig := Grt.Signals.Ghdl_Create_Stable_Signal (Std_Time (Time));
         when Implicit_Quiet =>
            Sig.Sig := Grt.Signals.Ghdl_Create_Quiet_Signal (Std_Time (Time));
         when Implicit_Transaction =>
            Sig.Sig := Grt.Signals.Ghdl_Create_Transaction_Signal;
         when others =>
            raise Internal_Error;
      end case;
      Register_Prefix (Prefix);
   end Create_Implicit_Signal;

   procedure Create_Delayed_Signal
     (Sig : Iir_Value_Literal_Acc; Pfx : Iir_Value_Literal_Acc; Val : Std_Time)
   is
   begin
      case Pfx.Kind is
            when Iir_Value_Array =>
               for I in Sig.Val_Array.V'Range loop
                  Create_Delayed_Signal
                    (Sig.Val_Array.V (I), Pfx.Val_Array.V (I), Val);
               end loop;
            when Iir_Value_Record =>
               for I in Pfx.Val_Record.V'Range loop
                  Create_Delayed_Signal
                    (Sig.Val_Record.V (I), Pfx.Val_Array.V (I), Val);
               end loop;
         when Iir_Value_Signal =>
            Sig.Sig := Grt.Signals.Ghdl_Create_Delayed_Signal (Pfx.Sig, Val);
         when others =>
            raise Internal_Error;
      end case;
   end Create_Delayed_Signal;

   -- Create a new signal, using DEFAULT as initial value.
   -- Set its number.
   procedure Create_User_Signal (Block: Block_Instance_Acc;
                                 Signal: Iir;
                                 Sig : Iir_Value_Literal_Acc;
                                 Default : Iir_Value_Literal_Acc)
   is
      use Grt.Rtis;
      use Grt.Signals;

      procedure Create_Signal (Lit: Iir_Value_Literal_Acc;
                               Sig : Iir_Value_Literal_Acc;
                               Sig_Type: Iir;
                               Already_Resolved : Boolean)
      is
         Sub_Resolved : Boolean := Already_Resolved;
         Resolv_Func : Iir;
         Resolv_Instance : Resolv_Instance_Acc;
      begin
         if not Already_Resolved
           and then Get_Kind (Sig_Type) in Iir_Kinds_Subtype_Definition
         then
            Resolv_Func := Get_Resolution_Indication (Sig_Type);
         else
            Resolv_Func := Null_Iir;
         end if;
         if Resolv_Func /= Null_Iir then
            Sub_Resolved := True;
            Resolv_Instance := new Resolv_Instance_Type'
              (Func => Get_Named_Entity (Resolv_Func),
               Block => Block,
               Sig => Sig);
            Grt.Signals.Ghdl_Signal_Create_Resolution
              (Resolution_Proc'Access,
               Resolv_Instance.all'Address,
               System.Null_Address,
               Ghdl_Index_Type (Get_Nbr_Of_Scalars (Lit)));
         end if;
         case Lit.Kind is
            when Iir_Value_Array =>
               declare
                  Sig_El_Type : constant Iir :=
                    Get_Element_Subtype (Get_Base_Type (Sig_Type));
               begin
                  for I in Lit.Val_Array.V'Range loop
                     Create_Signal (Lit.Val_Array.V (I), Sig.Val_Array.V (I),
                                    Sig_El_Type, Sub_Resolved);
                  end loop;
               end;
            when Iir_Value_Record =>
               declare
                  El : Iir_Element_Declaration;
                  List : Iir_List;
               begin
                  List := Get_Elements_Declaration_List
                    (Get_Base_Type (Sig_Type));
                  for I in Lit.Val_Record.V'Range loop
                     El := Get_Nth_Element (List, Natural (I - 1));
                     Create_Signal (Lit.Val_Record.V (I), Sig.Val_Record.V (I),
                                    Get_Type (El), Sub_Resolved);
                  end loop;
               end;

            when Iir_Value_I64 =>
               Sig.Sig := Grt.Signals.Ghdl_Create_Signal_I64
                 (Lit.I64, null, System.Null_Address);
            when Iir_Value_B1 =>
               Sig.Sig := Grt.Signals.Ghdl_Create_Signal_B1
                 (Lit.B1, null, System.Null_Address);
            when Iir_Value_E32 =>
               Sig.Sig := Grt.Signals.Ghdl_Create_Signal_E32
                 (Lit.E32, null, System.Null_Address);
            when Iir_Value_F64 =>
               Sig.Sig := Grt.Signals.Ghdl_Create_Signal_F64
                 (Lit.F64, null, System.Null_Address);

            when Iir_Value_Signal
              | Iir_Value_Range
              | Iir_Value_File
              | Iir_Value_Access
              | Iir_Value_Protected
              | Iir_Value_Quantity
              | Iir_Value_Terminal =>
               raise Internal_Error;
         end case;
      end Create_Signal;

      Sig_Type: constant Iir := Get_Type (Signal);
      Mode : Mode_Signal_Type;
      Kind : Kind_Signal_Type;

      type Iir_Mode_To_Mode_Signal_Type is
        array (Iir_Mode) of Mode_Signal_Type;
      Iir_Mode_To_Mode_Signal : constant Iir_Mode_To_Mode_Signal_Type :=
        (Iir_Unknown_Mode => Mode_Signal,
         Iir_Linkage_Mode => Mode_Linkage,
         Iir_Buffer_Mode => Mode_Buffer,
         Iir_Out_Mode => Mode_Out,
         Iir_Inout_Mode => Mode_Inout,
         Iir_In_Mode => Mode_In);

      type Iir_Kind_To_Kind_Signal_Type is
        array (Iir_Signal_Kind) of Kind_Signal_Type;
      Iir_Kind_To_Kind_Signal : constant Iir_Kind_To_Kind_Signal_Type :=
        (Iir_Register_Kind  => Kind_Signal_Register,
         Iir_Bus_Kind       => Kind_Signal_Bus);
   begin
      case Get_Kind (Signal) is
         when Iir_Kind_Interface_Signal_Declaration =>
            Mode := Iir_Mode_To_Mode_Signal (Get_Mode (Signal));
         when Iir_Kind_Signal_Declaration =>
            Mode := Mode_Signal;
         when others =>
            Error_Kind ("elaborate_signal", Signal);
      end case;

      if Get_Guarded_Signal_Flag (Signal) then
         Kind := Iir_Kind_To_Kind_Signal (Get_Signal_Kind (Signal));
      else
         Kind := Kind_Signal_No;
      end if;

      Grt.Signals.Ghdl_Signal_Set_Mode (Mode, Kind, True);

      Create_Signal (Default, Sig, Sig_Type, False);
   end Create_User_Signal;

   procedure Create_Signals is
   begin
      for I in Signals_Table.First .. Signals_Table.Last loop
         declare
            E : Signal_Entry renames Signals_Table.Table (I);
         begin
            case E.Kind is
               when Guard_Signal =>
                  Create_Guard_Signal (E.Instance, E.Sig, E.Decl);
               when Implicit_Stable | Implicit_Quiet | Implicit_Transaction =>
                  Create_Implicit_Signal (E.Sig, E.Time, E.Prefix, E.Kind);
               when Implicit_Delayed =>
                  Create_Delayed_Signal (E.Sig, E.Prefix, Std_Time (E.Time));
               when User_Signal =>
                  Create_User_Signal (E.Instance, E.Decl, E.Sig, E.Init);
            end case;
         end;
      end loop;
   end Create_Signals;

   procedure Ghdl_Elaborate
   is
      Entity: Iir_Entity_Declaration;

      -- Number of input ports of the top entity.
      In_Signals: Natural;
      El : Iir;
   begin
      Instance_Pool := Global_Pool'Access;

      Elaboration.Elaborate_Design (Top_Config);
      Entity := Iirs_Utils.Get_Entity (Get_Library_Unit (Top_Config));

      if not Is_Empty (Expr_Pool) then
         raise Internal_Error;
      end if;

      Instance_Pool := null;

      -- Be sure there is no IN ports in the top entity.
      El := Get_Port_Chain (Entity);
      In_Signals := 0;
      while El /= Null_Iir loop
         if Get_Mode (El) = Iir_In_Mode then
            In_Signals := In_Signals + 1;
         end if;
         El := Get_Chain (El);
      end loop;

      if In_Signals /= 0 then
         Error_Msg ("top entity should not have inputs signals");
         -- raise Simulation_Error;
      end if;

      if Disp_Stats then
         Disp_Design_Stats;
      end if;

      if Disp_Ams then
         Simulation.AMS.Debugger.Disp_Characteristic_Expressions;
      end if;

      -- There is no inputs.
      -- All the simulation is done via time, so it must be displayed.
      Disp_Time_Before_Values := True;

      -- Initialisation.
      if Trace_Simulation then
         Put_Line ("Initialisation:");
      end if;

      Create_Signals;
      Create_Connects;
      Create_Disconnections;
      Create_Processes;

      if Disp_Tree then
         Debugger.Disp_Instances_Tree;
      end if;

      if Flag_Interractive then
         Debug (Reason_Elab);
      end if;
   end Ghdl_Elaborate;

   procedure Simulation_Entity (Top_Conf : Iir_Design_Unit) is
   begin
      Top_Config := Top_Conf;
      Grt.Processes.One_Stack := True;

      Grt.Errors.Error_Hook := Debug_Error'Access;

      if Flag_Interractive then
         Debug (Reason_Start);
      end if;

      Grt.Main.Run;
   exception
      when Debugger_Quit =>
         null;
      when Simulation_Finished =>
         null;
   end Simulation_Entity;

end Simulation;