1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
|
-- Semantic analysis.
-- Copyright (C) 2002, 2003, 2004, 2005 Tristan Gingold
--
-- GHDL is free software; you can redistribute it and/or modify it under
-- the terms of the GNU General Public License as published by the Free
-- Software Foundation; either version 2, or (at your option) any later
-- version.
--
-- GHDL is distributed in the hope that it will be useful, but WITHOUT ANY
-- WARRANTY; without even the implied warranty of MERCHANTABILITY or
-- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
-- for more details.
--
-- You should have received a copy of the GNU General Public License
-- along with GHDL; see the file COPYING. If not, write to the Free
-- Software Foundation, 59 Temple Place - Suite 330, Boston, MA
-- 02111-1307, USA.
with Libraries;
with Flags; use Flags;
with Types; use Types;
with Errorout; use Errorout;
with Evaluation; use Evaluation;
with Sem;
with Sem_Expr; use Sem_Expr;
with Sem_Scopes; use Sem_Scopes;
with Sem_Names; use Sem_Names;
with Sem_Decls;
with Std_Names;
with Iirs_Utils; use Iirs_Utils;
with Std_Package; use Std_Package;
with Xrefs; use Xrefs;
package body Sem_Types is
procedure Set_Type_Has_Signal (Atype : Iir)
is
begin
-- Sanity check.
if not Get_Signal_Type_Flag (Atype) then
-- Do not crash since this may be called on an erroneous design.
return;
end if;
-- If the type is already marked, nothing to do.
if Get_Has_Signal_Flag (Atype) then
return;
end if;
Set_Has_Signal_Flag (Atype, True);
case Get_Kind (Atype) is
when Iir_Kind_Integer_Type_Definition
| Iir_Kind_Enumeration_Type_Definition
| Iir_Kind_Physical_Type_Definition
| Iir_Kind_Floating_Type_Definition =>
null;
when Iir_Kinds_Subtype_Definition =>
declare
Func : Iir_Function_Declaration;
Mark : Iir;
begin
Set_Type_Has_Signal (Get_Base_Type (Atype));
-- Mark the resolution function (this may be required by the
-- back-end to generate resolver).
if Get_Resolved_Flag (Atype) then
Func := Get_Resolution_Function (Atype);
-- Maybe the type is resolved through its elements.
if Func /= Null_Iir then
Func := Get_Named_Entity (Func);
Set_Resolution_Function_Flag (Func, True);
end if;
end if;
Mark := Get_Type_Mark (Atype);
if Mark /= Null_Iir then
Set_Type_Has_Signal (Mark);
end if;
end;
when Iir_Kind_Array_Type_Definition =>
Set_Type_Has_Signal (Get_Element_Subtype (Atype));
when Iir_Kind_Record_Type_Definition =>
declare
El : Iir;
begin
El := Get_Element_Declaration_Chain (Atype);
while El /= Null_Iir loop
Set_Type_Has_Signal (Get_Type (El));
El := Get_Chain (El);
end loop;
end;
when Iir_Kind_Error =>
null;
when Iir_Kind_Incomplete_Type_Definition =>
-- No need to copy the flag.
null;
when others =>
Error_Kind ("set_type_has_signal(2)", Atype);
end case;
end Set_Type_Has_Signal;
-- Sem a range expression.
-- Both left and right bounds must be of the same type kind, ie
-- integer types, or if INT_ONLY is false, real types.
-- However, the two bounds need not have the same type.
function Sem_Range_Expression (Expr : Iir; Int_Only : Boolean) return Iir
is
Left, Right: Iir;
Bt_L_Kind, Bt_R_Kind : Iir_Kind;
begin
Left := Sem_Expression_Universal (Get_Left_Limit (Expr));
Right := Sem_Expression_Universal (Get_Right_Limit (Expr));
if Left = Null_Iir or Right = Null_Iir then
return Null_Iir;
end if;
Set_Left_Limit (Expr, Left);
Set_Right_Limit (Expr, Right);
Set_Expr_Staticness (Expr, Min (Get_Expr_Staticness (Left),
Get_Expr_Staticness (Right)));
Bt_L_Kind := Get_Kind (Get_Base_Type (Get_Type (Left)));
Bt_R_Kind := Get_Kind (Get_Base_Type (Get_Type (Right)));
if Int_Only then
if Bt_L_Kind /= Iir_Kind_Integer_Type_Definition
and then Bt_R_Kind = Iir_Kind_Integer_Type_Definition
then
Error_Msg_Sem ("left bound must be an integer expression", Left);
return Null_Iir;
end if;
if Bt_R_Kind /= Iir_Kind_Integer_Type_Definition
and then Bt_L_Kind = Iir_Kind_Integer_Type_Definition
then
Error_Msg_Sem ("right bound must be an integer expression", Left);
return Null_Iir;
end if;
if Bt_R_Kind /= Iir_Kind_Integer_Type_Definition
and then Bt_L_Kind /= Iir_Kind_Integer_Type_Definition
then
Error_Msg_Sem ("each bound must be an integer expression", Expr);
return Null_Iir;
end if;
else
if Bt_L_Kind /= Bt_R_Kind then
Error_Msg_Sem ("left and right bounds must be of the same type",
Expr);
return Null_Iir;
end if;
case Bt_L_Kind is
when Iir_Kind_Integer_Type_Definition
| Iir_Kind_Floating_Type_Definition =>
null;
when others =>
-- Enumeration range are not allowed to define a new type.
Error_Msg_Sem
("bad range type, only integer or float is allowed", Expr);
return Null_Iir;
end case;
end if;
return Expr;
end Sem_Range_Expression;
function Create_Integer_Type (Loc : Iir; Constraint : Iir; Decl : Iir)
return Iir
is
Ntype: Iir_Integer_Subtype_Definition;
Ndef: Iir_Integer_Type_Definition;
begin
Ntype := Create_Iir (Iir_Kind_Integer_Subtype_Definition);
Location_Copy (Ntype, Loc);
Ndef := Create_Iir (Iir_Kind_Integer_Type_Definition);
Location_Copy (Ndef, Loc);
Set_Base_Type (Ndef, Ndef);
Set_Type_Declarator (Ndef, Decl);
Set_Type_Staticness (Ndef, Locally);
Set_Signal_Type_Flag (Ndef, True);
Set_Base_Type (Ntype, Ndef);
Set_Type_Declarator (Ntype, Decl);
Set_Range_Constraint (Ntype, Constraint);
Set_Type_Staticness (Ntype, Get_Expr_Staticness (Constraint));
Set_Resolved_Flag (Ntype, False);
Set_Signal_Type_Flag (Ntype, True);
if Get_Type_Staticness (Ntype) /= Locally then
Error_Msg_Sem ("range constraint of type must be locally static",
Decl);
end if;
return Ntype;
end Create_Integer_Type;
function Range_Expr_To_Type_Definition (Expr : Iir; Decl: Iir)
return Iir
is
Left, Right : Iir;
begin
if Sem_Range_Expression (Expr, False) = Null_Iir then
return Null_Iir;
end if;
Left := Get_Left_Limit (Expr);
Right := Get_Right_Limit (Expr);
if Get_Expr_Staticness (Expr) = Locally then
Left := Eval_Expr (Left);
Set_Left_Limit (Expr, Left);
Right := Eval_Expr (Right);
Set_Right_Limit (Expr, Right);
end if;
case Get_Kind (Get_Base_Type (Get_Type (Left))) is
when Iir_Kind_Integer_Type_Definition =>
return Create_Integer_Type (Expr, Expr, Decl);
when Iir_Kind_Floating_Type_Definition =>
declare
Ntype: Iir_Floating_Subtype_Definition;
Ndef: Iir_Floating_Type_Definition;
begin
Ntype := Create_Iir (Iir_Kind_Floating_Subtype_Definition);
Location_Copy (Ntype, Expr);
Ndef := Create_Iir (Iir_Kind_Floating_Type_Definition);
Location_Copy (Ndef, Expr);
Set_Base_Type (Ndef, Ndef);
Set_Type_Declarator (Ndef, Decl);
Set_Type_Staticness (Ndef, Get_Expr_Staticness (Expr));
Set_Signal_Type_Flag (Ndef, True);
Set_Base_Type (Ntype, Ndef);
Set_Type_Declarator (Ntype, Decl);
Set_Range_Constraint (Ntype, Expr);
Set_Resolved_Flag (Ntype, False);
Set_Type_Staticness (Ntype, Get_Expr_Staticness (Expr));
Set_Signal_Type_Flag (Ntype, True);
return Ntype;
end;
when others =>
-- sem_range_expression should catch such errors.
raise Internal_Error;
end case;
end Range_Expr_To_Type_Definition;
function Create_Physical_Literal (Val : Iir_Int64; Unit : Iir) return Iir
is
Lit : Iir;
begin
Lit := Create_Iir (Iir_Kind_Physical_Int_Literal);
Set_Value (Lit, Val);
Set_Unit_Name (Lit, Unit);
Set_Expr_Staticness (Lit, Locally);
Set_Type (Lit, Get_Type (Unit));
Location_Copy (Lit, Unit);
return Lit;
end Create_Physical_Literal;
-- Sem a physical type definition. Create a subtype.
function Sem_Physical_Type_Definition (Range_Expr: Iir; Decl : Iir)
return Iir_Physical_Subtype_Definition
is
Unit: Iir_Unit_Declaration;
Def : Iir_Physical_Type_Definition;
Sub_Type: Iir_Physical_Subtype_Definition;
Range_Expr1: Iir;
Val : Iir;
Lit : Iir_Physical_Int_Literal;
begin
Def := Get_Type (Range_Expr);
-- LRM93 �4.1
-- The simple name declared by a type declaration denotes the
-- declared type, unless the type declaration declares both a base
-- type and a subtype of the base type, in which case the simple name
-- denotes the subtype, and the base type is anonymous.
Set_Type_Declarator (Def, Decl);
Set_Base_Type (Def, Def);
Set_Resolved_Flag (Def, False);
Set_Type_Staticness (Def, Locally);
Set_Signal_Type_Flag (Def, True);
-- LRM93 �3.1.3
-- Each bound of a range constraint that is used in a physical type
-- definition must be a locally static expression of some integer type
-- but the two bounds need not have the same integer type.
case Get_Kind (Range_Expr) is
when Iir_Kind_Range_Expression =>
Range_Expr1 := Sem_Range_Expression (Range_Expr, True);
when others =>
Error_Kind ("sem_physical_type_definition", Range_Expr);
end case;
if Range_Expr1 /= Null_Iir then
if Get_Expr_Staticness (Range_Expr1) /= Locally then
Error_Msg_Sem
("range constraint for a physical type must be static",
Range_Expr1);
Range_Expr1 := Null_Iir;
else
Range_Expr1 := Eval_Expr (Range_Expr1);
end if;
end if;
-- Create the subtype.
Sub_Type := Create_Iir (Iir_Kind_Physical_Subtype_Definition);
Location_Copy (Sub_Type, Range_Expr);
Set_Base_Type (Sub_Type, Def);
Set_Signal_Type_Flag (Sub_Type, True);
-- Sem primary units.
Unit := Get_Unit_Chain (Def);
Lit := Create_Physical_Literal (1, Unit);
Set_Physical_Unit_Value (Unit, Lit);
Add_Name (Unit);
Set_Type (Unit, Def);
Set_Expr_Staticness (Unit, Locally);
Set_Visible_Flag (Unit, True);
Xref_Decl (Unit);
-- Sem secondary units.
Unit := Get_Chain (Unit);
while Unit /= Null_Iir loop
-- Val := Sem_Physical_Literal (Get_Multiplier (Unit));
Val := Sem_Expression (Get_Physical_Literal (Unit), Def);
if Val /= Null_Iir then
Val := Eval_Expr (Val);
Set_Physical_Literal (Unit, Val);
if Get_Kind (Val) = Iir_Kind_Unit_Declaration then
Val := Create_Physical_Literal (1, Val);
end if;
Set_Physical_Unit_Value (Unit, Val);
-- LRM93 �3.1
-- The position number of unit names need not lie within the range
-- specified by the range constraint.
-- GHDL: this was not true in VHDL87.
-- GHDL: This is not so simple if 1 is not included in the range.
if False and then Flags.Vhdl_Std = Vhdl_87
and then Range_Expr1 /= Null_Iir
then
if not Eval_Int_In_Range (Get_Value (Unit), Range_Expr1) then
Error_Msg_Sem
("physical literal does not lie within the range", Unit);
end if;
end if;
else
-- Avoid errors storm.
Set_Physical_Literal (Unit, Get_Primary_Unit (Def));
Set_Physical_Unit_Value (Unit, Lit);
end if;
Sem_Scopes.Add_Name (Unit);
Set_Type (Unit, Def);
Set_Expr_Staticness (Unit, Locally);
Sem_Scopes.Name_Visible (Unit);
Xref_Decl (Unit);
Unit := Get_Chain (Unit);
end loop;
if Range_Expr1 /= Null_Iir then
declare
-- Convert an integer literal to a physical literal.
-- This is used to convert bounds.
function Lit_To_Phys_Lit (Lim : Iir_Integer_Literal)
return Iir_Physical_Int_Literal
is
Res : Iir_Physical_Int_Literal;
begin
Res := Create_Iir (Iir_Kind_Physical_Int_Literal);
Location_Copy (Res, Lim);
Set_Type (Res, Def);
Set_Value (Res, Get_Value (Lim));
Set_Unit_Name (Res, Get_Primary_Unit (Def));
Set_Expr_Staticness (Res, Locally);
Set_Literal_Origin (Res, Lim);
return Res;
end Lit_To_Phys_Lit;
Phys_Range : Iir_Range_Expression;
begin
-- Create the physical range.
Phys_Range := Create_Iir (Iir_Kind_Range_Expression);
Location_Copy (Phys_Range, Range_Expr1);
Set_Type (Phys_Range, Def);
Set_Direction (Phys_Range, Get_Direction (Range_Expr1));
Set_Left_Limit
(Phys_Range, Lit_To_Phys_Lit (Get_Left_Limit (Range_Expr1)));
Set_Right_Limit
(Phys_Range, Lit_To_Phys_Lit (Get_Right_Limit (Range_Expr1)));
Set_Expr_Staticness
(Phys_Range, Get_Expr_Staticness (Range_Expr1));
Set_Range_Constraint (Sub_Type, Phys_Range);
-- This must be locally...
Set_Type_Staticness (Sub_Type, Get_Expr_Staticness (Range_Expr1));
end;
end if;
Set_Resolved_Flag (Sub_Type, False);
return Sub_Type;
end Sem_Physical_Type_Definition;
-- Return true iff decl is std.textio.text
function Is_Text_Type_Declaration (Decl : Iir_Type_Declaration)
return Boolean
is
use Std_Names;
P : Iir;
begin
if Get_Identifier (Decl) /= Name_Text then
return False;
end if;
P := Get_Parent (Decl);
if Get_Kind (P) /= Iir_Kind_Package_Declaration
or else Get_Identifier (P) /= Name_Textio
then
return False;
end if;
-- design_unit, design_file, library_declaration.
P := Get_Library (Get_Design_File (Get_Design_Unit (P)));
if P /= Libraries.Std_Library then
return False;
end if;
return True;
end Is_Text_Type_Declaration;
procedure Check_No_File_Type (El_Type : Iir; Loc : Iir) is
begin
case Get_Kind (El_Type) is
when Iir_Kind_File_Type_Definition =>
Error_Msg_Sem
("element of file type is not allowed in a composite type", Loc);
when others =>
null;
end case;
end Check_No_File_Type;
-- Semantize the array_element type of DEF.
-- Set type_staticness and resolved_flag of DEF.
-- type_staticness of DEF (before calling this function) must be the
-- staticness of the array indexes.
procedure Sem_Array_Element (Def : Iir)
is
El_Type : Iir;
begin
El_Type := Get_Element_Subtype (Def);
El_Type := Sem_Subtype_Indication (El_Type);
if El_Type = Null_Iir then
Set_Type_Staticness (Def, None);
Set_Resolved_Flag (Def, False);
Set_Element_Subtype (Def, Error_Type);
return;
end if;
Set_Element_Subtype (Def, El_Type);
Check_No_File_Type (El_Type, Def);
Set_Signal_Type_Flag (Def, Get_Signal_Type_Flag (El_Type));
-- LRM93 �3.2.1.1
-- The same requirement exists [must define a constrained
-- array subtype] [...] for the element subtype indication
-- of an array type definition, if the type of the array
-- element is itself an array type.
if not Sem_Is_Constrained (El_Type) then
Error_Msg_Sem ("array element of unconstrained "
& Disp_Node (El_Type) & " is not allowed", Def);
end if;
Set_Type_Staticness (Def, Min (Get_Type_Staticness (El_Type),
Get_Type_Staticness (Def)));
Set_Resolved_Flag (Def, Get_Resolved_Flag (El_Type));
end Sem_Array_Element;
procedure Sem_Protected_Type_Declaration (Type_Decl : Iir_Type_Declaration)
is
Decl : Iir_Protected_Type_Declaration;
El : Iir;
begin
Decl := Get_Type (Type_Decl);
Set_Base_Type (Decl, Decl);
Set_Resolved_Flag (Decl, False);
Set_Signal_Type_Flag (Decl, False);
Set_Type_Staticness (Decl, None);
-- LRM 10.3 Visibility
-- [...] except in the declaration of a design_unit or a protected type
-- declaration, in which case it starts immediatly after the reserved
-- word is occuring after the identifier of the design unit or
-- protected type declaration.
Set_Visible_Flag (Type_Decl, True);
-- LRM 10.1
-- n) A protected type declaration, together with the corresponding
-- body.
Open_Declarative_Region;
Sem_Decls.Sem_Declaration_Chain (Decl, False);
El := Get_Declaration_Chain (Decl);
while El /= Null_Iir loop
case Get_Kind (El) is
when Iir_Kind_Use_Clause
| Iir_Kind_Attribute_Specification =>
null;
when Iir_Kind_Procedure_Declaration
| Iir_Kind_Function_Declaration =>
declare
Inter : Iir;
Inter_Type : Iir;
begin
Inter := Get_Interface_Declaration_Chain (El);
while Inter /= Null_Iir loop
Inter_Type := Get_Type (Inter);
if Inter_Type /= Null_Iir
and then Get_Signal_Type_Flag (Inter_Type) = False
and then Get_Kind (Inter_Type)
/= Iir_Kind_Protected_Type_Declaration
then
Error_Msg_Sem
("formal parameter method must not be "
& "access or file type", Inter);
end if;
Inter := Get_Chain (Inter);
end loop;
if Get_Kind (El) = Iir_Kind_Function_Declaration then
Inter_Type := Get_Return_Type (El);
if Inter_Type /= Null_Iir
and then Get_Signal_Type_Flag (Inter_Type) = False
then
Error_Msg_Sem
("method return type must not be access of file",
El);
end if;
end if;
end;
when others =>
Error_Msg_Sem
(Disp_Node (El)
& " are not allowed in protected type declaration", El);
end case;
El := Get_Chain (El);
end loop;
Close_Declarative_Region;
end Sem_Protected_Type_Declaration;
procedure Sem_Protected_Type_Body (Bod : Iir)
is
Inter : Name_Interpretation_Type;
Type_Decl : Iir;
Decl : Iir;
El : Iir;
begin
-- LRM 3.5 Protected types.
-- Each protected type declaration appearing immediatly within a given
-- declaration region must have exactly one corresponding protected type
-- body appearing immediatly within the same declarative region and
-- textually subsequent to the protected type declaration.
--
-- Similarly, each protected type body appearing immediatly within a
-- given declarative region must have exactly one corresponding
-- protected type declaration appearing immediatly within the same
-- declarative region and textually prior to the protected type body.
Inter := Get_Interpretation (Get_Identifier (Bod));
if Valid_Interpretation (Inter)
and then Is_In_Current_Declarative_Region (Inter)
then
Type_Decl := Get_Declaration (Inter);
if Get_Kind (Type_Decl) = Iir_Kind_Type_Declaration then
Decl := Get_Type (Type_Decl);
else
Decl := Null_Iir;
end if;
else
Decl := Null_Iir;
end if;
if Decl /= Null_Iir
and then Get_Kind (Decl) = Iir_Kind_Protected_Type_Declaration
then
Set_Protected_Type_Declaration (Bod, Decl);
if Get_Protected_Type_Body (Decl) /= Null_Iir then
Error_Msg_Sem
("protected type body already declared for "
& Disp_Node (Decl), Bod);
Error_Msg_Sem
("(previous body)", Get_Protected_Type_Body (Decl));
Decl := Null_Iir;
elsif not Get_Visible_Flag (Type_Decl) then
-- Can this happen ?
Error_Msg_Sem
("protected type declaration not yet visible", Bod);
Error_Msg_Sem
("(location of protected type declaration)", Decl);
Decl := Null_Iir;
else
Set_Protected_Type_Body (Decl, Bod);
end if;
else
Error_Msg_Sem
("no protected type declaration for this body", Bod);
if Decl /= Null_Iir then
Error_Msg_Sem
("(found " & Disp_Node (Decl) & " declared here)", Decl);
Decl := Null_Iir;
end if;
end if;
-- LRM 10.1
-- n) A protected type declaration, together with the corresponding
-- body.
Open_Declarative_Region;
if Decl /= Null_Iir then
Xref_Body (Bod, Decl);
Add_Protected_Type_Declarations (Decl);
end if;
Sem_Decls.Sem_Declaration_Chain (Bod, False);
El := Get_Declaration_Chain (Bod);
while El /= Null_Iir loop
case Get_Kind (El) is
when Iir_Kind_Procedure_Declaration
| Iir_Kind_Function_Declaration
| Iir_Kind_Implicit_Procedure_Declaration
| Iir_Kind_Implicit_Function_Declaration =>
null;
when Iir_Kind_Procedure_Body
| Iir_Kind_Function_Body =>
null;
when Iir_Kind_Type_Declaration
| Iir_Kind_Anonymous_Type_Declaration =>
null;
when Iir_Kind_Subtype_Declaration
| Iir_Kind_Constant_Declaration
| Iir_Kind_Variable_Declaration
| Iir_Kind_File_Declaration =>
null;
when Iir_Kind_Object_Alias_Declaration
| Iir_Kind_Non_Object_Alias_Declaration =>
null;
when Iir_Kind_Attribute_Declaration
| Iir_Kind_Attribute_Specification
| Iir_Kind_Use_Clause
| Iir_Kind_Group_Template_Declaration
| Iir_Kind_Group_Declaration =>
null;
when others =>
Error_Msg_Sem
(Disp_Node (El) & " not allowed in a protected type body",
El);
end case;
El := Get_Chain (El);
end loop;
Sem_Decls.Check_Full_Declaration (Bod, Bod);
-- LRM 3.5.2 Protected type bodies
-- Each subprogram declaration appearing in a given protected type
-- declaration shall have a corresponding subprogram body appearing in
-- the corresponding protected type body.
if Decl /= Null_Iir then
Sem_Decls.Check_Full_Declaration (Decl, Bod);
end if;
Close_Declarative_Region;
end Sem_Protected_Type_Body;
function Sem_Type_Definition (Def: Iir; Decl: Iir) return Iir
is
begin
case Get_Kind (Def) is
when Iir_Kind_Enumeration_Type_Definition =>
Set_Base_Type (Def, Def);
Set_Type_Staticness (Def, Locally);
Set_Signal_Type_Flag (Def, True);
Create_Range_Constraint_For_Enumeration_Type (Def);
-- Makes all literal visible.
declare
El: Iir;
Literal_List: Iir_List;
begin
Literal_List := Get_Enumeration_Literal_List (Def);
for I in Natural loop
El := Get_Nth_Element (Literal_List, I);
exit when El = Null_Iir;
Set_Expr_Staticness (El, Locally);
Set_Name_Staticness (El, Locally);
Set_Base_Name (El, El);
Set_Type (El, Def);
Set_Enumeration_Decl (El, El);
Sem.Compute_Subprogram_Hash (El);
Sem_Scopes.Add_Name (El);
Name_Visible (El);
Xref_Decl (El);
end loop;
end;
Set_Resolved_Flag (Def, False);
return Def;
when Iir_Kind_Range_Expression =>
if Get_Type (Def) /= Null_Iir then
return Sem_Physical_Type_Definition (Def, Decl);
else
return Range_Expr_To_Type_Definition (Def, Decl);
end if;
when Iir_Kind_Range_Array_Attribute
| Iir_Kind_Attribute_Name
| Iir_Kind_Parenthesis_Name =>
if Get_Type (Def) /= Null_Iir then
return Sem_Physical_Type_Definition (Def, Decl);
end if;
-- Nb: the attribute is expected to be a 'range or
-- a 'reverse_range attribute.
declare
Res : Iir;
begin
Res := Sem_Discrete_Range_Expression (Def, Null_Iir, True);
if Res = Null_Iir then
return Null_Iir;
end if;
-- This cannot be a floating range.
return Create_Integer_Type (Def, Res, Decl);
end;
when Iir_Kind_Array_Subtype_Definition =>
declare
Index_Type : Iir;
Index_List : Iir_List;
Base_Index_List : Iir_List;
Staticness : Iir_Staticness;
-- array_type_definition, which is the same as the subtype,
-- but without any constraint in the indexes.
Base_Type: Iir;
begin
-- FIXME: all indexes must be either constrained or
-- unconstrained.
-- If all indexes are unconstrained, this is really a type
-- otherwise, this is a subtype.
-- Create a definition for the base type of subtype DEF.
Base_Type := Create_Iir (Iir_Kind_Array_Type_Definition);
Location_Copy (Base_Type, Def);
Set_Base_Type (Base_Type, Base_Type);
Set_Type_Declarator (Base_Type, Decl);
Base_Index_List := Create_Iir_List;
Set_Index_Subtype_List (Base_Type, Base_Index_List);
Staticness := Locally;
Index_List := Get_Index_Subtype_List (Def);
for I in Natural loop
Index_Type := Get_Nth_Element (Index_List, I);
exit when Index_Type = Null_Iir;
Index_Type := Sem_Discrete_Range_Integer (Index_Type);
if Index_Type /= Null_Iir then
Index_Type := Range_To_Subtype_Definition (Index_Type);
else
-- Avoid errors.
Index_Type := Natural_Subtype_Definition;
end if;
Replace_Nth_Element (Index_List, I, Index_Type);
Staticness := Min (Staticness,
Get_Type_Staticness (Index_Type));
-- Set the index type in the array type.
-- must "unconstraint" the subtype.
Append_Element (Base_Index_List, Index_Type);
end loop;
Set_Type_Staticness (Def, Staticness);
-- Element type.
Sem_Array_Element (Def);
Set_Element_Subtype (Base_Type, Get_Element_Subtype (Def));
Set_Signal_Type_Flag (Base_Type, Get_Signal_Type_Flag (Def));
-- According to LRM93 �7.4.1, an unconstrained array type
-- is not static.
Set_Type_Staticness (Base_Type, None);
Set_Type_Declarator (Base_Type, Decl);
Set_Resolved_Flag (Base_Type, Get_Resolved_Flag (Def));
Set_Base_Type (Def, Base_Type);
Set_Type_Mark (Def, Base_Type);
return Def;
end;
when Iir_Kind_Array_Type_Definition =>
declare
Index_Type : Iir;
Index_List : Iir_List;
begin
Set_Base_Type (Def, Def);
Index_List := Get_Index_Subtype_List (Def);
for I in Natural loop
Index_Type := Get_Nth_Element (Index_List, I);
exit when Index_Type = Null_Iir;
Index_Type := Sem_Subtype_Indication (Index_Type);
if Index_Type /= Null_Iir then
if Get_Kind (Index_Type) not in
Iir_Kinds_Discrete_Type_Definition
then
Error_Msg_Sem
("index type of an array must be discrete",
Index_Type);
end if;
else
-- Avoid errors.
Index_Type := Natural_Subtype_Definition;
end if;
Replace_Nth_Element (Index_List, I, Index_Type);
end loop;
-- According to LRM93 �7.4.1, an unconstrained array type
-- is not static.
Set_Type_Staticness (Def, None);
Sem_Array_Element (Def);
return Def;
end;
when Iir_Kind_Record_Type_Definition =>
declare
-- Non semantized type of previous element.
Last_El_Type : Iir;
-- Semantized type of previous element
Last_Type : Iir;
El: Iir;
El_Type : Iir;
Resolved_Flag : Boolean;
Staticness : Iir_Staticness;
begin
-- LRM 10.1
-- 5. A record type declaration,
Open_Declarative_Region;
Resolved_Flag := True;
Last_El_Type := Null_Iir;
Last_Type := Null_Iir;
Staticness := Locally;
Set_Signal_Type_Flag (Def, True);
El := Get_Element_Declaration_Chain (Def);
while El /= Null_Iir loop
El_Type := Get_Type (El);
if El_Type /= Last_El_Type then
-- Be careful for a declaration list (r,g,b: integer).
Last_El_Type := El_Type;
El_Type := Sem_Subtype_Indication (El_Type);
Last_Type := El_Type;
else
El_Type := Last_Type;
end if;
if El_Type /= Null_Iir then
Set_Type (El, El_Type);
Check_No_File_Type (El_Type, El);
if not Get_Signal_Type_Flag (El_Type) then
Set_Signal_Type_Flag (Def, False);
end if;
-- LRM93 �3.2.1.1
-- The same requirement [must define a constrained array
-- subtype] exits for the subtype indication of an
-- element declaration, if the type of the record
-- element is an array type.
if not Sem_Is_Constrained (El_Type) then
Error_Msg_Sem
("element declaration of unconstrained "
& Disp_Node (El_Type) & " is not allowed", El);
end if;
Resolved_Flag :=
Resolved_Flag and Get_Resolved_Flag (El_Type);
Staticness := Min (Staticness,
Get_Type_Staticness (El_Type));
else
Staticness := None;
end if;
Sem_Scopes.Add_Name (El);
Name_Visible (El);
Xref_Decl (El);
El := Get_Chain (El);
end loop;
Close_Declarative_Region;
Set_Base_Type (Def, Def);
Set_Resolved_Flag (Def, Resolved_Flag);
Set_Type_Staticness (Def, Staticness);
return Def;
end;
when Iir_Kind_Access_Type_Definition =>
declare
D_Type : Iir;
begin
D_Type := Sem_Subtype_Indication (Get_Designated_Type (Def),
True);
if D_Type /= Null_Iir then
case Get_Kind (D_Type) is
when Iir_Kind_Incomplete_Type_Definition =>
Append_Element
(Get_Incomplete_Type_List (D_Type), Def);
when Iir_Kind_File_Type_Definition =>
-- LRM 3.3
-- The designated type must not be a file type.
Error_Msg_Sem
("designated type must not be a file type", Def);
when others =>
null;
end case;
Set_Designated_Type (Def, D_Type);
end if;
Set_Base_Type (Def, Def);
Set_Type_Staticness (Def, None);
Set_Resolved_Flag (Def, False);
Set_Signal_Type_Flag (Def, False);
return Def;
end;
when Iir_Kind_File_Type_Definition =>
declare
Type_Mark : Iir;
begin
Type_Mark := Sem_Subtype_Indication (Get_Type_Mark (Def));
Set_Type_Mark (Def, Type_Mark);
if Type_Mark /= Null_Iir then
if Get_Signal_Type_Flag (Type_Mark) = False then
-- LRM 3.4
-- The base type of this subtype must not be a file type
-- or an access type.
-- If the base type is a composite type, it must not
-- contain a subelement of an access type.
Error_Msg_Sem
(Disp_Node (Type_Mark) & " cannot be a file type", Def);
elsif Get_Kind (Type_Mark) in Iir_Kinds_Array_Type_Definition
then
-- LRM 3.4
-- If the base type is an array type, it must be a one
-- dimensional array type.
if not Is_Unidim_Array_Type (Type_Mark) then
Error_Msg_Sem
("multi-dimensional " & Disp_Node (Type_Mark)
& " cannot be a file type", Def);
end if;
end if;
end if;
Set_Base_Type (Def, Def);
Set_Resolved_Flag (Def, False);
Set_Text_File_Flag (Def, Is_Text_Type_Declaration (Decl));
Set_Signal_Type_Flag (Def, False);
Set_Type_Staticness (Def, None);
return Def;
end;
when Iir_Kind_Protected_Type_Declaration =>
Sem_Protected_Type_Declaration (Decl);
return Def;
when others =>
Error_Kind ("sem_type_definition", Def);
return Def;
end case;
end Sem_Type_Definition;
-- Convert a range expression to a subtype definition whose constraint is
-- A_RANGE.
-- This function extract the type of the range expression.
function Range_To_Subtype_Definition (A_Range: Iir) return Iir
is
Sub_Type: Iir;
Range_Type : Iir;
begin
case Get_Kind (A_Range) is
when Iir_Kind_Range_Expression
| Iir_Kind_Range_Array_Attribute
| Iir_Kind_Reverse_Range_Array_Attribute =>
-- Create a sub type.
Range_Type := Get_Type (A_Range);
when Iir_Kinds_Discrete_Type_Definition =>
-- A_RANGE is already a subtype definition.
return A_Range;
when others =>
Error_Kind ("range_to_subtype_definition", A_Range);
return Null_Iir;
end case;
case Get_Kind (Range_Type) is
when Iir_Kind_Enumeration_Type_Definition
| Iir_Kind_Enumeration_Subtype_Definition =>
Sub_Type := Create_Iir (Iir_Kind_Enumeration_Subtype_Definition);
when Iir_Kind_Integer_Type_Definition
| Iir_Kind_Integer_Subtype_Definition =>
Sub_Type := Create_Iir (Iir_Kind_Integer_Subtype_Definition);
when others =>
raise Internal_Error;
end case;
Location_Copy (Sub_Type, A_Range);
Set_Range_Constraint (Sub_Type, A_Range);
Set_Base_Type (Sub_Type, Get_Base_Type (Range_Type));
Set_Type_Staticness (Sub_Type, Get_Expr_Staticness (A_Range));
Set_Signal_Type_Flag (Sub_Type, True);
return Sub_Type;
end Range_To_Subtype_Definition;
-- Return TRUE iff FUNC is a resolution function for ATYPE.
function Is_A_Resolution_Function (Func: Iir; Atype: Iir) return Boolean
is
Decl: Iir;
Decl_Type : Iir;
Ret_Type : Iir;
begin
-- LRM93 2.4
-- A resolution function must be a [pure] function;
if Get_Kind (Func) not in Iir_Kinds_Function_Declaration then
return False;
end if;
Decl := Get_Interface_Declaration_Chain (Func);
-- LRM93 2.4
-- moreover, it must have a single input parameter of class constant
if Decl = Null_Iir or else Get_Chain (Decl) /= Null_Iir then
return False;
end if;
if Get_Kind (Decl) /= Iir_Kind_Constant_Interface_Declaration then
return False;
end if;
-- LRM93 2.4
-- that is a one-dimensional, unconstrained array
Decl_Type := Get_Type (Decl);
if Get_Kind (Decl_Type) /= Iir_Kind_Array_Type_Definition then
return False;
end if;
if Get_Nbr_Elements (Get_Index_Subtype_List (Decl_Type)) /= 1 then
return False;
end if;
-- LRM93 2.4
-- whose element type is that of the resolved signal.
-- The type of the return value of the function must also be that of
-- the signal.
Ret_Type := Get_Return_Type (Func);
if Get_Base_Type (Get_Element_Subtype (Decl_Type))
/= Get_Base_Type (Ret_Type)
then
return False;
end if;
if Atype /= Null_Iir
and then Get_Base_Type (Ret_Type) /= Get_Base_Type (Atype)
then
return False;
end if;
-- LRM93 2.4
-- A resolution function must be a [pure] function;
if Flags.Vhdl_Std >= Vhdl_93 and then Get_Pure_Flag (Func) = False then
if Atype /= Null_Iir then
Error_Msg_Sem
("resolution " & Disp_Node (Func) & " must be pure", Atype);
end if;
return False;
end if;
return True;
end Is_A_Resolution_Function;
-- Note: this sets resolved_flag.
procedure Sem_Resolution_Function (Decl: Iir)
is
Func: Iir;
Name : Iir;
Res: Iir;
El : Iir;
List : Iir_List;
Has_Error : Boolean;
begin
Name := Get_Resolution_Function (Decl);
if Name = Null_Iir then
-- This is not a resolved type.
return;
end if;
-- FIXME: add this check (maybe based on resolved_flag ?)
--if Get_Kind (Name) in Iir_Kinds_Function_Declaration then
-- -- The resolution function was already semantized.
-- -- This can happen if comes from an unconstrained array subtype.
-- return;
--end if;
Sem_Name (Name, False);
Func := Get_Named_Entity (Name);
if Func = Error_Mark then
return;
end if;
Res := Null_Iir;
if Is_Overload_List (Func) then
List := Get_Overload_List (Func);
Has_Error := False;
for I in Natural loop
El := Get_Nth_Element (List, I);
exit when El = Null_Iir;
if Is_A_Resolution_Function (El, Decl) then
if Res /= Null_Iir then
if not Has_Error then
Has_Error := True;
Error_Msg_Sem
("can't resolve overload for resolution function",
Decl);
Error_Msg_Sem ("candidate functions are:", Decl);
Error_Msg_Sem (" " & Disp_Subprg (Func), Func);
end if;
Error_Msg_Sem (" " & Disp_Subprg (El), El);
else
Res := El;
end if;
end if;
end loop;
if Has_Error then
return;
end if;
else
if Is_A_Resolution_Function (Func, Decl) then
Res := Func;
end if;
end if;
if Res = Null_Iir then
Error_Msg_Sem ("no matching resolution function for "
& Disp_Node (Name), Decl);
else
Set_Named_Entity (Name, Res);
Set_Use_Flag (Res, True);
Set_Resolved_Flag (Decl, True);
Xref_Name (Name);
end if;
end Sem_Resolution_Function;
-- Semantize array_subtype_definition DEF using TYPE_MARK as the base type
-- of DEF.
-- DEF must have an index list and may have a resolution function.
-- Return DEF.
function Sem_Array_Subtype_Indication (Type_Mark : Iir; Def : Iir)
return Iir
is
Type_Index, Subtype_Index: Iir;
Base_Type : Iir;
El_Type : Iir;
Staticness : Iir_Staticness;
Error_Seen : Boolean;
Type_Index_List : Iir_List;
Subtype_Index_List : Iir_List;
begin
case Get_Kind (Type_Mark) is
when Iir_Kind_Array_Type_Definition
| Iir_Kind_Unconstrained_Array_Subtype_Definition =>
null;
when others =>
Error_Msg_Sem
(Disp_Node (Type_Mark) & " cannot be constrained", Def);
-- Continue as if BASE_TYPE is really a base type, it is safe.
end case;
Base_Type := Get_Base_Type (Type_Mark);
Set_Base_Type (Def, Base_Type);
El_Type := Get_Element_Subtype (Base_Type);
Staticness := Get_Type_Staticness (El_Type);
Error_Seen := False;
Type_Index_List := Get_Index_Subtype_List (Base_Type);
Subtype_Index_List := Get_Index_Subtype_List (Def);
for I in Natural loop
Type_Index := Get_Nth_Element (Type_Index_List, I);
Subtype_Index := Get_Nth_Element (Subtype_Index_List, I);
exit when Type_Index = Null_Iir and Subtype_Index = Null_Iir;
if Type_Index = Null_Iir then
Error_Msg_Sem ("subtype has more indexes than "
& Disp_Node (Type_Mark)
& " defined at " & Disp_Location (Type_Mark),
Subtype_Index);
-- Forget extra indexes.
Set_Nbr_Elements (Subtype_Index_List, I);
exit;
end if;
if Subtype_Index = Null_Iir then
if not Error_Seen then
Error_Msg_Sem ("subtype has less indexes than "
& Disp_Node (Type_Mark)
& " defined at " & Disp_Location (Type_Mark),
Def);
Error_Seen := True;
end if;
-- Use type_index as a fake subtype
-- FIXME: it is too fake.
Append_Element (Subtype_Index_List, Type_Index);
Staticness := None;
else
Subtype_Index := Sem_Discrete_Range_Expression
(Subtype_Index, Type_Index, True);
if Subtype_Index /= Null_Iir then
Subtype_Index := Range_To_Subtype_Definition (Subtype_Index);
Staticness := Min (Staticness,
Get_Type_Staticness (Subtype_Index));
end if;
if Subtype_Index = Null_Iir then
-- Create a fake subtype from type_index.
-- FIXME: It is too fake.
Subtype_Index := Type_Index;
Staticness := None;
end if;
Replace_Nth_Element (Subtype_Index_List, I, Subtype_Index);
end if;
end loop;
Set_Type_Staticness (Def, Staticness);
Set_Element_Subtype (Def, El_Type);
Sem_Resolution_Function (Def);
if Get_Resolved_Flag (Def) or else Get_Resolved_Flag (El_Type) then
Set_Resolved_Flag (Def, True);
else
Set_Resolved_Flag (Def, False);
end if;
Set_Type_Mark (Def, Type_Mark);
Set_Signal_Type_Flag (Def, Get_Signal_Type_Flag (Type_Mark));
return Def;
end Sem_Array_Subtype_Indication;
-- Semantize a subtype indication.
-- DEF can be either a name or an iir_subtype_definition.
-- Return a new (an anonymous) subtype definition (with the correct kind),
-- or an already defined type definition (if DEF is a name).
function Sem_Subtype_Indication (Def: Iir; Incomplete : Boolean := False)
return Iir
is
Type_Mark: Iir;
Res: Iir;
Decl_Kind : Decl_Kind_Type;
begin
if Incomplete then
Decl_Kind := Decl_Incomplete_Type;
else
Decl_Kind := Decl_Type;
end if;
-- Simple case that correspond to no indication except a subtype
-- identifier
if Get_Kind (Def) in Iir_Kinds_Name then
Type_Mark := Find_Declaration (Def, Decl_Kind);
if Type_Mark = Null_Iir then
return Create_Error_Type (Def);
else
return Type_Mark;
end if;
end if;
-- Semantize the type mark.
Type_Mark := Find_Declaration (Get_Type_Mark (Def), Decl_Kind);
if Type_Mark = Null_Iir then
-- FIXME: handle inversion such as "subtype BASETYPE RESOLV", which
-- should emit "resolution function must precede type name".
return Create_Error_Type (Get_Type_Mark (Def));
end if;
Set_Type_Mark (Def, Type_Mark);
-- Check constraint.
case Get_Kind (Def) is
when Iir_Kind_Array_Subtype_Definition =>
case Get_Kind (Type_Mark) is
when Iir_Kind_Unconstrained_Array_Subtype_Definition
| Iir_Kind_Array_Type_Definition
| Iir_Kind_Access_Type_Definition =>
null;
when others =>
-- LRM 3.2.1.1 Index Constraints and Discrete Ranges
-- If an index constraint appears after a type mark [...]
-- The type mark must denote either an unconstrained array
-- type, or an access type whose designated type is such
-- an array type.
Error_Msg_Sem
("only unconstrained array type may be contrained "
&"by index", Def);
Error_Msg_Sem
(" (type mark is " & Disp_Node (Type_Mark) & ")",
Type_Mark);
return Type_Mark;
end case;
when Iir_Kind_Subtype_Definition =>
case Get_Kind (Type_Mark) is
when Iir_Kind_Integer_Subtype_Definition
| Iir_Kind_Floating_Subtype_Definition
| Iir_Kind_Enumeration_Subtype_Definition
| Iir_Kind_Physical_Subtype_Definition =>
null;
when Iir_Kind_Enumeration_Type_Definition =>
null;
when others =>
-- FIXME: find the correct sentence from LRM
-- GHDL: subtype_definition may also be used just to add
-- a resolution function.
if Get_Range_Constraint (Def) /= Null_Iir then
Error_Msg_Sem
("only scalar types may be constrained by range", Def);
Error_Msg_Sem
(" (type mark is " & Disp_Node (Type_Mark) & ")",
Type_Mark);
return Type_Mark;
end if;
end case;
when others =>
Error_Kind ("sem_subtype_indication", Def);
end case;
case Get_Kind (Type_Mark) is
when Iir_Kind_Array_Subtype_Definition
| Iir_Kind_Array_Type_Definition
| Iir_Kind_Unconstrained_Array_Subtype_Definition =>
-- -- If the base type is an unconstrained array subtype, then get
-- -- the *real* base type, and copy the resolution function (since
-- -- a base type has no resolution function).
-- if Get_Kind (Type_Mark) =
-- Iir_Kind_Unconstrained_Array_Subtype_Definition
-- and then Get_Kind (Def) = Iir_Kind_Subtype_Definition
-- then
-- if Get_Resolution_Function (Def) = Null_Iir then
-- if Get_Range_Constraint (Def) = Null_Iir then
-- -- In this case, DEF must simply be a name. There is
-- -- a parser internal error.
-- raise Internal_Error;
-- end if;
-- Set_Resolution_Function
-- (Def, Get_Resolution_Function (Type_Mark));
-- end if;
-- end if;
if Get_Kind (Def) = Iir_Kind_Subtype_Definition then
-- This is the case of "subtype new_array is [func] old_array".
-- def must be a constrained array.
if Get_Range_Constraint (Def) /= Null_Iir then
Error_Msg_Sem
("cannot use a range constraint for an array", Def);
return Type_Mark;
end if;
if Get_Resolution_Function (Def) = Null_Iir then
-- In this case, DEF must simply be a name. There is
-- a parser internal error.
raise Internal_Error;
end if;
case Get_Kind (Type_Mark) is
when Iir_Kind_Array_Type_Definition =>
Res := Create_Iir
(Iir_Kind_Unconstrained_Array_Subtype_Definition);
when Iir_Kind_Array_Subtype_Definition =>
Res := Create_Iir (Iir_Kind_Array_Subtype_Definition);
Set_Element_Subtype
(Res, Get_Element_Subtype (Type_Mark));
Set_Index_Subtype_List
(Res, Get_Index_Subtype_List (Type_Mark));
when others =>
Error_Kind ("sem_subtype_indication(array)", Type_Mark);
end case;
Location_Copy (Res, Def);
Set_Base_Type (Res, Get_Base_Type (Type_Mark));
Set_Resolution_Function (Res, Get_Resolution_Function (Def));
Set_Type_Staticness (Res, Get_Type_Staticness (Type_Mark));
Sem_Resolution_Function (Res);
Set_Signal_Type_Flag (Res, Get_Signal_Type_Flag (Type_Mark));
if Get_Resolved_Flag (Res)
or else Get_Resolved_Flag (Get_Element_Subtype (Type_Mark))
then
Set_Resolved_Flag (Res, True);
else
Set_Resolved_Flag (Res, False);
end if;
Set_Type_Mark (Res, Type_Mark);
Free_Name (Def);
return Res;
elsif Get_Kind (Def) = Iir_Kind_Array_Subtype_Definition then
-- Case of a constraint for an array.
-- Check each index constraint against array type.
return Sem_Array_Subtype_Indication (Type_Mark, Def);
else
Error_Kind ("sem_subtype_indication(1)", Def);
return Type_Mark;
end if;
when Iir_Kind_Integer_Subtype_Definition
| Iir_Kind_Floating_Subtype_Definition
| Iir_Kind_Enumeration_Subtype_Definition
| Iir_Kind_Physical_Subtype_Definition =>
if Get_Range_Constraint (Def) = Null_Iir
and then Get_Resolution_Function (Def) = Null_Iir
then
-- This defines an alias, and must have been handled just
-- before the case statment.
raise Internal_Error;
end if;
declare
A_Range : Iir;
begin
-- There are limits. Create a new subtype.
Res := Create_Iir (Get_Kind (Type_Mark));
Location_Copy (Res, Def);
Set_Base_Type (Res, Get_Base_Type (Type_Mark));
Set_Type_Mark (Res, Type_Mark);
Set_Resolution_Function (Res, Get_Resolution_Function (Def));
A_Range := Get_Range_Constraint (Def);
if A_Range = Null_Iir then
A_Range := Get_Range_Constraint (Type_Mark);
else
A_Range := Sem_Discrete_Range_Expression
(A_Range, Type_Mark, True);
if A_Range = Null_Iir then
-- Avoid error propagation.
A_Range := Get_Range_Constraint (Type_Mark);
end if;
end if;
Set_Range_Constraint (Res, A_Range);
Set_Type_Staticness (Res, Get_Expr_Staticness (A_Range));
Free_Name (Def);
Sem_Resolution_Function (Res);
Set_Signal_Type_Flag (Res, Get_Signal_Type_Flag (Type_Mark));
return Res;
end;
when Iir_Kind_Enumeration_Type_Definition =>
if Get_Range_Constraint (Def) = Null_Iir and then
Get_Resolution_Function (Def) = Null_Iir
then
raise Internal_Error;
end if;
declare
Constraint : Iir_Range_Expression;
begin
-- There are limits. Create a new subtype.
Res := Create_Iir (Iir_Kind_Enumeration_Subtype_Definition);
Location_Copy (Res, Def);
Set_Base_Type (Res, Type_Mark);
Set_Type_Mark (Res, Type_Mark);
Set_Resolution_Function (Res, Get_Resolution_Function (Def));
Constraint := Get_Range_Constraint (Def);
if Constraint = Null_Iir then
Constraint := Get_Range_Constraint (Type_Mark);
else
Constraint := Sem_Discrete_Range_Expression
(Constraint, Type_Mark, True);
-- FIXME: check bounds, check static
end if;
Set_Range_Constraint (Res, Constraint);
Set_Type_Staticness (Res, Get_Expr_Staticness (Constraint));
end;
Free_Name (Def);
Sem_Resolution_Function (Res);
Set_Signal_Type_Flag (Res, True);
return Res;
when Iir_Kind_Record_Type_Definition =>
declare
Func: Iir;
begin
if Get_Kind (Def) /= Iir_Kind_Subtype_Definition then
Error_Kind ("sem_subtype_indication1", Def);
return Null_Iir;
end if;
Func := Get_Resolution_Function (Def);
if Func = Null_Iir then
-- This is an alias.
raise Internal_Error;
end if;
Res := Create_Iir (Iir_Kind_Record_Subtype_Definition);
Location_Copy (Res, Def);
Set_Base_Type (Res, Type_Mark);
Set_Type_Staticness (Res, Get_Type_Staticness (Type_Mark));
Set_Type_Mark (Res, Type_Mark);
Set_Resolution_Function (Res, Func);
Sem_Resolution_Function (Res);
Set_Signal_Type_Flag (Res, Get_Signal_Type_Flag (Type_Mark));
Free_Name (Def);
return Res;
end;
when Iir_Kind_Access_Type_Definition =>
-- LRM93 4.2
-- A subtype indication denoting an access type [or a file type]
-- may not contain a resolution function.
if Get_Resolution_Function (Def) /= Null_Iir then
Error_Msg_Sem
("resolution function not allowed for an access type", Def);
end if;
case Get_Kind (Def) is
when Iir_Kind_Subtype_Definition =>
Free_Name (Def);
return Type_Mark;
when Iir_Kind_Array_Subtype_Definition =>
-- LRM93 �3.3
-- The only form of constraint that is allowed after a name
-- of an access type in a subtype indication is an index
-- constraint.
declare
Sub_Type : Iir;
pragma Unreferenced (Sub_Type);
Base_Type : Iir;
begin
Base_Type := Get_Designated_Type (Type_Mark);
Sub_Type := Sem_Array_Subtype_Indication (Base_Type, Def);
Res := Create_Iir (Iir_Kind_Access_Subtype_Definition);
Location_Copy (Res, Def);
Set_Base_Type (Res, Type_Mark);
Set_Signal_Type_Flag (Res, False);
Free_Old_Iir (Def);
return Res;
end;
when others =>
raise Internal_Error;
end case;
when Iir_Kind_File_Type_Definition =>
if Get_Kind (Def) = Iir_Kind_Subtype_Definition then
Free_Name (Def);
return Type_Mark;
else
raise Internal_Error;
end if;
when others =>
Error_Kind ("sem_subtype_indication", Type_Mark);
return Def;
end case;
end Sem_Subtype_Indication;
function Sem_Is_Constrained (A_Type: Iir) return Boolean is
begin
case Get_Kind (A_Type) is
when Iir_Kind_Array_Subtype_Definition =>
return True;
when Iir_Kind_Enumeration_Subtype_Definition
| Iir_Kind_Enumeration_Type_Definition
| Iir_Kind_Integer_Subtype_Definition
| Iir_Kind_Integer_Type_Definition
| Iir_Kind_Floating_Subtype_Definition
| Iir_Kind_Floating_Type_Definition
| Iir_Kind_Access_Type_Definition
| Iir_Kind_Access_Subtype_Definition
| Iir_Kind_Physical_Subtype_Definition
| Iir_Kind_Record_Type_Definition
| Iir_Kind_Record_Subtype_Definition
| Iir_Kind_File_Type_Definition =>
--| Iir_Kind_File_Subtype_Definition =>
return True;
when Iir_Kind_Protected_Type_Declaration =>
return True;
when Iir_Kind_Array_Type_Definition
| Iir_Kind_Unconstrained_Array_Subtype_Definition =>
return False;
when Iir_Kind_Incomplete_Type_Definition =>
return False;
when Iir_Kind_Error =>
return True;
when others =>
Error_Kind ("sem_is_constrained", A_Type);
end case;
end Sem_Is_Constrained;
end Sem_Types;
|