1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
|
with GNAT.Table;
with Ada.Text_IO; use Ada.Text_IO;
with Types; use Types;
with PSL.Errors; use PSL.Errors;
with PSL.CSE; use PSL.CSE;
with PSL.QM;
with PSL.Disp_NFAs; use PSL.Disp_NFAs;
with PSL.Optimize; use PSL.Optimize;
with PSL.NFAs.Utils;
with PSL.Prints;
with PSL.NFAs; use PSL.NFAs;
package body PSL.Build is
function Build_SERE_FA (N : Node) return NFA;
package Intersection is
function Build_Inter (L, R : NFA; Match_Len : Boolean) return NFA;
end Intersection;
package body Intersection is
type Stack_Entry_Id is new Natural;
No_Stack_Entry : constant Stack_Entry_Id := 0;
type Stack_Entry is record
L, R : NFA_State;
Res : NFA_State;
Next_Unhandled : Stack_Entry_Id;
end record;
package Stackt is new GNAT.Table
(Table_Component_Type => Stack_Entry,
Table_Index_Type => Stack_Entry_Id,
Table_Low_Bound => 1,
Table_Initial => 128,
Table_Increment => 100);
First_Unhandled : Stack_Entry_Id;
procedure Init_Stack is
begin
Stackt.Init;
First_Unhandled := No_Stack_Entry;
end Init_Stack;
function Not_Empty return Boolean is
begin
return First_Unhandled /= No_Stack_Entry;
end Not_Empty;
procedure Pop_State (L, R : out NFA_State) is
begin
L := Stackt.Table (First_Unhandled).L;
R := Stackt.Table (First_Unhandled).R;
First_Unhandled := Stackt.Table (First_Unhandled).Next_Unhandled;
end Pop_State;
function Get_State (N : NFA; L, R : NFA_State) return NFA_State
is
Res : NFA_State;
begin
for I in Stackt.First .. Stackt.Last loop
if Stackt.Table (I).L = L
and then Stackt.Table (I).R = R
then
return Stackt.Table (I).Res;
end if;
end loop;
Res := Add_State (N);
Stackt.Append ((L => L, R => R, Res => Res,
Next_Unhandled => First_Unhandled));
First_Unhandled := Stackt.Last;
return Res;
end Get_State;
function Build_Inter (L, R : NFA; Match_Len : Boolean) return NFA
is
Start_L, Start_R : NFA_State;
Final_L, Final_R : NFA_State;
S_L, S_R : NFA_State;
E_L, E_R : NFA_Edge;
Res : NFA;
Start : NFA_State;
Extra_L, Extra_R : NFA_Edge;
begin
Start_L := Get_Start_State (L);
Start_R := Get_Start_State (R);
Final_R := Get_Final_State (R);
Final_L := Get_Final_State (L);
if False then
Disp_Body (L);
Disp_Body (R);
Put ("//start state: ");
Disp_State (Start_L);
Put (",");
Disp_State (Start_R);
New_Line;
end if;
if Match_Len then
Extra_L := No_Edge;
Extra_R := No_Edge;
else
Extra_L := Add_Edge (Final_L, Final_L, True_Node);
Extra_R := Add_Edge (Final_R, Final_R, True_Node);
end if;
Res := Create_NFA;
Init_Stack;
Start := Get_State (Res, Start_L, Start_R);
Set_Start_State (Res, Start);
while Not_Empty loop
Pop_State (S_L, S_R);
if False then
Put ("//poped state: ");
Disp_State (S_L);
Put (",");
Disp_State (S_R);
New_Line;
end if;
E_L := Get_First_Src_Edge (S_L);
while E_L /= No_Edge loop
E_R := Get_First_Src_Edge (S_R);
while E_R /= No_Edge loop
if not (E_L = Extra_L and E_R = Extra_R) then
Add_Edge (Get_State (Res, S_L, S_R),
Get_State (Res,
Get_Edge_Dest (E_L),
Get_Edge_Dest (E_R)),
Build_Bool_And (Get_Edge_Expr (E_L),
Get_Edge_Expr (E_R)));
end if;
E_R := Get_Next_Src_Edge (E_R);
end loop;
E_L := Get_Next_Src_Edge (E_L);
end loop;
end loop;
Set_Final_State (Res, Get_State (Res, Final_L, Final_R));
Remove_Unreachable_States (Res);
if not Match_Len then
Remove_Edge (Extra_L);
Remove_Edge (Extra_R);
end if;
-- FIXME: free L and R.
return Res;
end Build_Inter;
end Intersection;
-- All edges from A are duplicated using B as a source.
-- Handle epsilon-edges.
procedure Duplicate_Src_Edges (N : NFA; A, B : NFA_State)
is
pragma Unreferenced (N);
E : NFA_Edge;
Expr : Node;
Dest : NFA_State;
begin
pragma Assert (A /= B);
E := Get_First_Src_Edge (A);
while E /= No_Edge loop
Expr := Get_Edge_Expr (E);
Dest := Get_Edge_Dest (E);
if Expr /= Null_Node then
Add_Edge (B, Dest, Expr);
end if;
E := Get_Next_Src_Edge (E);
end loop;
end Duplicate_Src_Edges;
-- All edges to A are duplicated using B as a destination.
-- Handle epsilon-edges.
procedure Duplicate_Dest_Edges (N : NFA; A, B : NFA_State)
is
pragma Unreferenced (N);
E : NFA_Edge;
Expr : Node;
Src : NFA_State;
begin
pragma Assert (A /= B);
E := Get_First_Dest_Edge (A);
while E /= No_Edge loop
Expr := Get_Edge_Expr (E);
Src := Get_Edge_Src (E);
if Expr /= Null_Node then
Add_Edge (Src, B, Expr);
end if;
E := Get_Next_Dest_Edge (E);
end loop;
end Duplicate_Dest_Edges;
procedure Remove_Epsilon_Edge (N : NFA; S, D : NFA_State) is
begin
if Get_First_Src_Edge (S) = No_Edge then
-- No edge from S.
-- Move edges to S to D.
Redest_Edges (S, D);
Remove_Unconnected_State (N, S);
if Get_Start_State (N) = S then
Set_Start_State (N, D);
end if;
elsif Get_First_Dest_Edge (D) = No_Edge then
-- No edge to D.
-- Move edges from D to S.
Resource_Edges (D, S);
Remove_Unconnected_State (N, D);
if Get_Final_State (N) = D then
Set_Final_State (N, S);
end if;
else
Duplicate_Dest_Edges (N, S, D);
Duplicate_Src_Edges (N, D, S);
Remove_Identical_Src_Edges (S);
end if;
end Remove_Epsilon_Edge;
procedure Remove_Epsilon (N : NFA;
E : NFA_Edge) is
S : constant NFA_State := Get_Edge_Src (E);
D : constant NFA_State := Get_Edge_Dest (E);
begin
Remove_Edge (E);
Remove_Epsilon_Edge (N, S, D);
end Remove_Epsilon;
function Build_Concat (L, R : NFA) return NFA
is
Start_L, Start_R : NFA_State;
Final_L, Final_R : NFA_State;
Eps_L, Eps_R : Boolean;
E_L, E_R : NFA_Edge;
begin
Start_L := Get_Start_State (L);
Start_R := Get_Start_State (R);
Final_R := Get_Final_State (R);
Final_L := Get_Final_State (L);
Eps_L := Get_Epsilon_NFA (L);
Eps_R := Get_Epsilon_NFA (R);
Merge_NFA (L, R);
Set_Start_State (L, Start_L);
Set_Final_State (L, Final_R);
Set_Epsilon_NFA (L, False);
if Eps_L then
E_L := Add_Edge (Start_L, Final_L, Null_Node);
end if;
if Eps_R then
E_R := Add_Edge (Start_R, Final_R, Null_Node);
end if;
Remove_Epsilon_Edge (L, Final_L, Start_R);
if Eps_L then
Remove_Epsilon (L, E_L);
end if;
if Eps_R then
Remove_Epsilon (L, E_R);
end if;
if (Start_L = Final_L or else Eps_L)
and then (Start_R = Final_R or else Eps_R)
then
Set_Epsilon_NFA (L, True);
end if;
Remove_Identical_Src_Edges (Final_L);
Remove_Identical_Dest_Edges (Start_R);
return L;
end Build_Concat;
function Build_Or (L, R : NFA) return NFA
is
Start_L, Start_R : NFA_State;
Final_L, Final_R : NFA_State;
Eps : Boolean;
Start, Final : NFA_State;
E_S_L, E_S_R, E_L_F, E_R_F : NFA_Edge;
begin
Start_L := Get_Start_State (L);
Start_R := Get_Start_State (R);
Final_R := Get_Final_State (R);
Final_L := Get_Final_State (L);
Eps := Get_Epsilon_NFA (L) or Get_Epsilon_NFA (R);
-- Optimize [*0] | R.
if Start_L = Final_L
and then Get_First_Src_Edge (Start_L) = No_Edge
then
if Start_R /= Final_R then
Set_Epsilon_NFA (R, True);
end if;
-- FIXME
-- delete_NFA (L);
return R;
end if;
Merge_NFA (L, R);
-- Use Thompson construction.
Start := Add_State (L);
Set_Start_State (L, Start);
E_S_L := Add_Edge (Start, Start_L, Null_Node);
E_S_R := Add_Edge (Start, Start_R, Null_Node);
Final := Add_State (L);
Set_Final_State (L, Final);
E_L_F := Add_Edge (Final_L, Final, Null_Node);
E_R_F := Add_Edge (Final_R, Final, Null_Node);
Set_Epsilon_NFA (L, Eps);
Remove_Epsilon (L, E_S_L);
Remove_Epsilon (L, E_S_R);
Remove_Epsilon (L, E_L_F);
Remove_Epsilon (L, E_R_F);
return L;
end Build_Or;
function Build_Fusion (L, R : NFA) return NFA
is
Start_R : NFA_State;
Final_L, Final_R, S_L : NFA_State;
E_L : NFA_Edge;
E_R : NFA_Edge;
N_L, Expr : Node;
begin
Start_R := Get_Start_State (R);
Final_R := Get_Final_State (R);
Final_L := Get_Final_State (L);
Merge_NFA (L, R);
E_L := Get_First_Dest_Edge (Final_L);
while E_L /= No_Edge loop
S_L := Get_Edge_Src (E_L);
N_L := Get_Edge_Expr (E_L);
E_R := Get_First_Src_Edge (Start_R);
while E_R /= No_Edge loop
Expr := Build_Bool_And (N_L, Get_Edge_Expr (E_R));
Expr := PSL.QM.Reduce (Expr);
if Expr /= False_Node then
Add_Edge (S_L, Get_Edge_Dest (E_R), Expr);
end if;
E_R := Get_Next_Src_Edge (E_R);
end loop;
Remove_Identical_Src_Edges (S_L);
E_L := Get_Next_Dest_Edge (E_L);
end loop;
Set_Final_State (L, Final_R);
Set_Epsilon_NFA (L, False);
if Get_First_Src_Edge (Final_L) = No_Edge then
Remove_State (L, Final_L);
end if;
if Get_First_Dest_Edge (Start_R) = No_Edge then
Remove_State (L, Start_R);
end if;
return L;
end Build_Fusion;
function Build_Star_Repeat (N : Node) return NFA is
Res : NFA;
Start, Final, S : NFA_State;
Seq : Node;
begin
Seq := Get_Sequence (N);
if Seq = Null_Node then
-- Epsilon.
Res := Create_NFA;
S := Add_State (Res);
Set_Start_State (Res, S);
Set_Final_State (Res, S);
return Res;
end if;
Res := Build_SERE_FA (Seq);
Start := Get_Start_State (Res);
Final := Get_Final_State (Res);
Redest_Edges (Final, Start);
Set_Final_State (Res, Start);
Remove_Unconnected_State (Res, Final);
Set_Epsilon_NFA (Res, False);
return Res;
end Build_Star_Repeat;
function Build_Plus_Repeat (N : Node) return NFA is
Res : NFA;
Start, Final : NFA_State;
T : NFA_Edge;
begin
Res := Build_SERE_FA (Get_Sequence (N));
Start := Get_Start_State (Res);
Final := Get_Final_State (Res);
T := Get_First_Dest_Edge (Final);
while T /= No_Edge loop
Add_Edge (Get_Edge_Src (T), Start, Get_Edge_Expr (T));
T := Get_Next_Src_Edge (T);
end loop;
return Res;
end Build_Plus_Repeat;
-- Association actual to formals, so that when a formal is referenced, the
-- actual can be used instead.
procedure Assoc_Instance (Decl : Node; Instance : Node)
is
Formal : Node;
Actual : Node;
begin
-- Temporary associates actuals to formals.
Formal := Get_Parameter_List (Decl);
Actual := Get_Association_Chain (Instance);
while Formal /= Null_Node loop
if Actual = Null_Node then
-- Not enough actual.
raise Internal_Error;
end if;
if Get_Actual (Formal) /= Null_Node then
-- Recursion
raise Internal_Error;
end if;
Set_Actual (Formal, Get_Actual (Actual));
Formal := Get_Chain (Formal);
Actual := Get_Chain (Actual);
end loop;
if Actual /= Null_Node then
-- Too many actual.
raise Internal_Error;
end if;
end Assoc_Instance;
procedure Unassoc_Instance (Decl : Node)
is
Formal : Node;
begin
-- Remove temporary association.
Formal := Get_Parameter_List (Decl);
while Formal /= Null_Node loop
Set_Actual (Formal, Null_Node);
Formal := Get_Chain (Formal);
end loop;
end Unassoc_Instance;
function Build_SERE_FA (N : Node) return NFA
is
Res : NFA;
S1, S2 : NFA_State;
begin
case Get_Kind (N) is
when N_Booleans =>
Res := Create_NFA;
S1 := Add_State (Res);
S2 := Add_State (Res);
Set_Start_State (Res, S1);
Set_Final_State (Res, S2);
if N /= False_Node then
Add_Edge (S1, S2, N);
end if;
return Res;
when N_Braced_SERE =>
return Build_SERE_FA (Get_SERE (N));
when N_Concat_SERE =>
return Build_Concat (Build_SERE_FA (Get_Left (N)),
Build_SERE_FA (Get_Right (N)));
when N_Fusion_SERE =>
return Build_Fusion (Build_SERE_FA (Get_Left (N)),
Build_SERE_FA (Get_Right (N)));
when N_Match_And_Seq =>
return Intersection.Build_Inter (Build_SERE_FA (Get_Left (N)),
Build_SERE_FA (Get_Right (N)),
True);
when N_And_Seq =>
return Intersection.Build_Inter (Build_SERE_FA (Get_Left (N)),
Build_SERE_FA (Get_Right (N)),
False);
when N_Or_Prop
| N_Or_Seq =>
return Build_Or (Build_SERE_FA (Get_Left (N)),
Build_SERE_FA (Get_Right (N)));
when N_Star_Repeat_Seq =>
return Build_Star_Repeat (N);
when N_Plus_Repeat_Seq =>
return Build_Plus_Repeat (N);
when N_Sequence_Instance
| N_Endpoint_Instance =>
declare
Decl : Node;
begin
Decl := Get_Declaration (N);
Assoc_Instance (Decl, N);
Res := Build_SERE_FA (Get_Sequence (Decl));
Unassoc_Instance (Decl);
return Res;
end;
when N_Boolean_Parameter
| N_Sequence_Parameter =>
declare
Actual : constant Node := Get_Actual (N);
begin
if Actual = Null_Node then
raise Internal_Error;
end if;
return Build_SERE_FA (Actual);
end;
when others =>
Error_Kind ("build_sere_fa", N);
end case;
end Build_SERE_FA;
function Count_Edges (S : NFA_State) return Natural
is
Res : Natural;
E : NFA_Edge;
begin
Res := 0;
E := Get_First_Src_Edge (S);
while E /= No_Edge loop
Res := Res + 1;
E := Get_Next_Src_Edge (E);
end loop;
return Res;
end Count_Edges;
type Count_Vector is array (Natural range <>) of Natural;
procedure Count_All_Edges (N : NFA; Res : out Count_Vector)
is
S : NFA_State;
begin
S := Get_First_State (N);
while S /= No_State loop
Res (Natural (Get_State_Label (S))) := Count_Edges (S);
S := Get_Next_State (S);
end loop;
end Count_All_Edges;
pragma Unreferenced (Count_All_Edges);
package Determinize is
-- Create a new NFA that reaches its final state only when N fails
-- (ie when the final state is not reached).
function Determinize (N : NFA) return NFA;
end Determinize;
package body Determinize is
-- In all the comments N stands for the initial NFA (ie the NFA to
-- determinize).
use Prints;
Flag_Trace : constant Boolean := False;
Last_Label : Int32 := 0;
-- The tree associates a set of states in N to *an* uniq set in the
-- result NFA.
--
-- As the NFA is labelized, each node represent a state in N, and has
-- two branches: one for state is present and one for state is absent.
--
-- The leaves contain the state in the result NFA.
--
-- The leaves are chained to create a stack of state to handle.
--
-- The root of the tree is node Start_Tree_Id and represent the start
-- state of N.
type Deter_Tree_Id is new Natural;
No_Tree_Id : constant Deter_Tree_Id := 0;
Start_Tree_Id : constant Deter_Tree_Id := 1;
-- List of unhanded leaves.
Deter_Head : Deter_Tree_Id;
type Deter_Tree_Id_Bool_Array is array (Boolean) of Deter_Tree_Id;
-- Node in the tree.
type Deter_Tree_Entry is record
Parent : Deter_Tree_Id;
-- For non-leaf:
Child : Deter_Tree_Id_Bool_Array;
-- For leaf:
Link : Deter_Tree_Id;
State : NFA_State;
-- + value ?
end record;
package Detert is new GNAT.Table
(Table_Component_Type => Deter_Tree_Entry,
Table_Index_Type => Deter_Tree_Id,
Table_Low_Bound => 1,
Table_Initial => 128,
Table_Increment => 100);
type Bool_Vector is array (Natural range <>) of Boolean;
pragma Pack (Bool_Vector);
-- Convert a set of states in N to a state in the result NFA.
-- The set is represented by a vector of boolean. An element of the
-- vector is true iff the corresponding state is present.
function Add_Vector (V : Bool_Vector; N : NFA) return NFA_State
is
E : Deter_Tree_Id;
Added : Boolean;
Res : NFA_State;
begin
E := Start_Tree_Id;
Added := False;
for I in V'Range loop
if Detert.Table (E).Child (V (I)) = No_Tree_Id then
Detert.Append ((Child => (No_Tree_Id, No_Tree_Id),
Parent => E,
Link => No_Tree_Id,
State => No_State));
Detert.Table (E).Child (V (I)) := Detert.Last;
E := Detert.Last;
Added := True;
else
E := Detert.Table (E).Child (V (I));
Added := False;
end if;
end loop;
if Added then
-- Create the new state.
Res := Add_State (N);
Detert.Table (E).State := Res;
if Flag_Trace then
Set_State_Label (Res, Last_Label);
Put ("Result state" & Int32'Image (Last_Label) & " for");
for I in V'Range loop
if V (I) then
Put (Natural'Image (I));
end if;
end loop;
New_Line;
Last_Label := Last_Label + 1;
end if;
-- Put it to the list of states to be handled.
Detert.Table (E).Link := Deter_Head;
Deter_Head := E;
return Res;
else
return Detert.Table (E).State;
end if;
end Add_Vector;
-- Return true iff the stack is empty (ie all the states have been
-- handled).
function Stack_Empty return Boolean is
begin
return Deter_Head = No_Tree_Id;
end Stack_Empty;
-- Get an element from the stack.
-- Extract the state in the result NFA.
-- Rebuild the set of states in N (ie rebuild the vector of states).
procedure Stack_Pop (V : out Bool_Vector; S : out NFA_State)
is
L, P : Deter_Tree_Id;
begin
L := Deter_Head;
pragma Assert (L /= No_Tree_Id);
S := Detert.Table (L).State;
Deter_Head := Detert.Table (L).Link;
for I in reverse V'Range loop
pragma Assert (L /= Start_Tree_Id);
P := Detert.Table (L).Parent;
if L = Detert.Table (P).Child (True) then
V (I) := True;
elsif L = Detert.Table (P).Child (False) then
V (I) := False;
else
raise Program_Error;
end if;
L := P;
end loop;
pragma Assert (L = Start_Tree_Id);
end Stack_Pop;
type State_Vector is array (Natural range <>) of Natural;
type Expr_Vector is array (Natural range <>) of Node;
procedure Build_Arcs (N : NFA;
State : NFA_State;
States : State_Vector;
Exprs : Expr_Vector;
Expr : Node;
V : Bool_Vector)
is
begin
if Expr = False_Node then
return;
end if;
if States'Length = 0 then
declare
Reduced_Expr : constant Node := PSL.QM.Reduce (Expr);
--Reduced_Expr : constant Node := Expr;
S : NFA_State;
begin
if Reduced_Expr = False_Node then
return;
end if;
S := Add_Vector (V, N);
Add_Edge (State, S, Reduced_Expr);
if Flag_Trace then
Put (" Add edge");
Put (Int32'Image (Get_State_Label (State)));
Put (" to");
Put (Int32'Image (Get_State_Label (S)));
Put (", expr=");
Dump_Expr (Expr);
Put (", reduced=");
Dump_Expr (Reduced_Expr);
New_Line;
end if;
end;
else
declare
N_States : State_Vector renames
States (States'First + 1 .. States'Last);
N_V : Bool_Vector (V'Range) := V;
S : constant Natural := States (States'First);
E : constant Node := Exprs (S);
begin
N_V (S) := True;
if Expr = Null_Node then
Build_Arcs (N, State, N_States, Exprs, E, N_V);
Build_Arcs (N, State, N_States, Exprs,
Build_Bool_Not (E), V);
else
Build_Arcs (N, State, N_States, Exprs,
Build_Bool_And (E, Expr), N_V);
Build_Arcs (N, State, N_States, Exprs,
Build_Bool_And (Build_Bool_Not (E), Expr), V);
end if;
end;
end if;
end Build_Arcs;
function Determinize_1 (N : NFA; Nbr_States : Natural) return NFA
is
Final : Natural;
V : Bool_Vector (0 .. Nbr_States - 1);
Exprs : Expr_Vector (0 .. Nbr_States - 1);
S : NFA_State;
E : NFA_Edge;
D : Natural;
Edge_Expr : Node;
Expr : Node;
Nbr_Dest : Natural;
States : State_Vector (0 .. Nbr_States - 1);
Res : NFA;
State : NFA_State;
begin
Final := Natural (Get_State_Label (Get_Final_State (N)));
-- FIXME: handle epsilon or final = start -> create an empty NFA.
-- Initialize the tree.
Res := Create_NFA;
Detert.Init;
Detert.Append ((Child => (No_Tree_Id, No_Tree_Id),
Parent => No_Tree_Id,
Link => No_Tree_Id,
State => No_State));
pragma Assert (Detert.Last = Start_Tree_Id);
Deter_Head := No_Tree_Id;
-- Put the initial state in the tree and in the stack.
-- FIXME: ok, we know that its label is 0.
V := (0 => True, others => False);
State := Add_Vector (V, Res);
Set_Start_State (Res, State);
-- The failure state. As there is nothing to do with this
-- state, remove it from the stack.
V := (others => False);
State := Add_Vector (V, Res);
Set_Final_State (Res, State);
Stack_Pop (V, State);
-- Iterate on states in the result NFA that haven't yet been handled.
while not Stack_Empty loop
Stack_Pop (V, State);
if Flag_Trace then
Put_Line ("Handle result state"
& Int32'Image (Get_State_Label (State)));
end if;
-- Build edges vector.
Exprs := (others => Null_Node);
Expr := Null_Node;
S := Get_First_State (N);
Nbr_Dest := 0;
while S /= No_State loop
if V (Natural (Get_State_Label (S))) then
E := Get_First_Src_Edge (S);
while E /= No_Edge loop
D := Natural (Get_State_Label (Get_Edge_Dest (E)));
Edge_Expr := Get_Edge_Expr (E);
if False and Flag_Trace then
Put_Line (" edge" & Int32'Image (Get_State_Label (S))
& " to" & Natural'Image (D));
end if;
if D = Final then
Edge_Expr := Build_Bool_Not (Edge_Expr);
if Expr = Null_Node then
Expr := Edge_Expr;
else
Expr := Build_Bool_And (Expr, Edge_Expr);
end if;
else
if Exprs (D) = Null_Node then
Exprs (D) := Edge_Expr;
States (Nbr_Dest) := D;
Nbr_Dest := Nbr_Dest + 1;
else
Exprs (D) := Build_Bool_Or (Exprs (D),
Edge_Expr);
end if;
end if;
E := Get_Next_Src_Edge (E);
end loop;
end if;
S := Get_Next_State (S);
end loop;
if Flag_Trace then
Put (" Final: expr=");
Print_Expr (Expr);
New_Line;
for I in 0 .. Nbr_Dest - 1 loop
Put (" Dest");
Put (Natural'Image (States (I)));
Put (" expr=");
Print_Expr (Exprs (States (I)));
New_Line;
end loop;
end if;
-- Build arcs.
if not (Nbr_Dest = 0 and Expr = Null_Node) then
Build_Arcs (Res, State,
States (0 .. Nbr_Dest - 1), Exprs, Expr,
Bool_Vector'(0 .. Nbr_States - 1 => False));
end if;
end loop;
--Remove_Unreachable_States (Res);
return Res;
end Determinize_1;
function Determinize (N : NFA) return NFA
is
Nbr_States : Natural;
begin
Labelize_States (N, Nbr_States);
if Flag_Trace then
Put_Line ("NFA to determinize:");
Disp_NFA (N);
Last_Label := 0;
end if;
return Determinize_1 (N, Nbr_States);
end Determinize;
end Determinize;
function Build_Initial_Rep (N : NFA) return NFA
is
S : constant NFA_State := Get_Start_State (N);
begin
Add_Edge (S, S, True_Node);
return N;
end Build_Initial_Rep;
procedure Build_Strong (N : NFA)
is
S : NFA_State;
Final : constant NFA_State := Get_Final_State (N);
begin
S := Get_First_State (N);
while S /= No_State loop
-- FIXME.
if S /= Final then
Add_Edge (S, Final, EOS_Node);
end if;
S := Get_Next_State (S);
end loop;
end Build_Strong;
procedure Build_Abort (N : NFA; Expr : Node)
is
S : NFA_State;
E : NFA_Edge;
Not_Expr : Node;
begin
Not_Expr := Build_Bool_Not (Expr);
S := Get_First_State (N);
while S /= No_State loop
E := Get_First_Src_Edge (S);
while E /= No_Edge loop
Set_Edge_Expr (E, Build_Bool_And (Not_Expr, Get_Edge_Expr (E)));
E := Get_Next_Src_Edge (E);
end loop;
S := Get_Next_State (S);
end loop;
end Build_Abort;
function Build_Property_FA (N : Node) return NFA
is
L, R : NFA;
begin
case Get_Kind (N) is
when N_Sequences
| N_Booleans =>
-- Build A(S) or A(B)
R := Build_SERE_FA (N);
return Determinize.Determinize (R);
when N_Strong =>
R := Build_Property_FA (Get_Property (N));
Build_Strong (R);
return R;
when N_Imp_Seq =>
-- R |=> P --> {R; TRUE} |-> P
L := Build_SERE_FA (Get_Sequence (N));
R := Build_Property_FA (Get_Property (N));
return Build_Concat (L, R);
when N_Overlap_Imp_Seq =>
-- S |-> P is defined as Ac(S) : A(P)
L := Build_SERE_FA (Get_Sequence (N));
R := Build_Property_FA (Get_Property (N));
return Build_Fusion (L, R);
when N_Log_Imp_Prop =>
-- B -> P --> {B} |-> P --> Ac(B) : A(P)
L := Build_SERE_FA (Get_Left (N));
R := Build_Property_FA (Get_Right (N));
return Build_Fusion (L, R);
when N_And_Prop =>
-- P1 && P2 --> A(P1) | A(P2)
L := Build_Property_FA (Get_Left (N));
R := Build_Property_FA (Get_Right (N));
return Build_Or (L, R);
when N_Never =>
R := Build_SERE_FA (Get_Property (N));
return Build_Initial_Rep (R);
when N_Always =>
R := Build_Property_FA (Get_Property (N));
return Build_Initial_Rep (R);
when N_Abort =>
R := Build_Property_FA (Get_Property (N));
Build_Abort (R, Get_Boolean (N));
return R;
when N_Property_Instance =>
declare
Decl : Node;
begin
Decl := Get_Declaration (N);
Assoc_Instance (Decl, N);
R := Build_Property_FA (Get_Property (Decl));
Unassoc_Instance (Decl);
return R;
end;
when others =>
Error_Kind ("build_property_fa", N);
end case;
end Build_Property_FA;
function Build_FA (N : Node) return NFA
is
use PSL.NFAs.Utils;
Res : NFA;
begin
Res := Build_Property_FA (N);
if Optimize_Final then
pragma Debug (Check_NFA (Res));
Remove_Unreachable_States (Res);
Remove_Simple_Prefix (Res);
Merge_Identical_States (Res);
Merge_Edges (Res);
end if;
-- Clear the QM table.
PSL.QM.Reset;
return Res;
end Build_FA;
end PSL.Build;
|