summaryrefslogtreecommitdiff
path: root/libraries/ieee/math_complex.vhdl
blob: 278f7413ffc8f3bdcc4e6b79a1dee4748e4bd5d6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
------------------------------------------------------------------------
--
-- Copyright 1996 by IEEE. All rights reserved.
--
-- This source file is an essential part of IEEE Std 1076.2-1996, IEEE Standard 
-- VHDL Mathematical Packages. This source file may not be copied, sold, or 
-- included with software that is sold without written permission from the IEEE
-- Standards Department. This source file may be used to implement this standard 
-- and may be distributed in compiled form in any manner so long as the 
-- compiled form does not allow direct decompilation of the original source file.
-- This source file may be copied for individual use between licensed users. 
-- This source file is provided on an AS IS basis. The IEEE disclaims ANY 
-- WARRANTY EXPRESS OR IMPLIED INCLUDING ANY WARRANTY OF MERCHANTABILITY 
-- AND FITNESS FOR USE FOR A PARTICULAR PURPOSE. The user of the source 
-- file shall indemnify and hold IEEE harmless from any damages or liability 
-- arising out of the use thereof.
--
-- Title:       Standard VHDL Mathematical Packages (IEEE Std 1076.2-1996,
--              MATH_COMPLEX)
--
-- Library:     This package shall be compiled into a library
--              symbolically named IEEE.
--
-- Developers:  IEEE DASC VHDL Mathematical Packages Working Group
--
-- Purpose:     This package defines a standard for designers to use in
--              describing VHDL models that make use of common COMPLEX
--              constants and common COMPLEX mathematical functions and
--              operators.
--
-- Limitation:  The values generated by the functions in this package may
--              vary from platform to platform, and the precision of results
--              is only guaranteed to be the minimum required by IEEE Std 1076-
--              1993.
--
-- Notes:
--              No declarations or definitions shall be included in, or
--              excluded from, this package.
--              The "package declaration" defines the types, subtypes, and
--              declarations of MATH_COMPLEX.
--              The standard mathematical definition and conventional meaning
--              of the mathematical functions that are part of this standard
--              represent the formal semantics of the implementation of the
--              MATH_COMPLEX package declaration.  The purpose of the
--              MATH_COMPLEX package body is to provide a guideline for
--              implementations to verify their implementation of MATH_COMPLEX.
--              Tool developers may choose to implement the package body in
--              the most efficient manner available to them.
--
-- -----------------------------------------------------------------------------
-- Version    : 1.5
-- Date       : 24 July 1996
-- -----------------------------------------------------------------------------

use WORK.MATH_REAL.all;
package MATH_COMPLEX is
    constant CopyRightNotice: STRING
      := "Copyright 1996 IEEE. All rights reserved.";

    --
    -- Type Definitions
    --
    type COMPLEX is
        record
                RE: REAL;        -- Real part
                IM: REAL;        -- Imaginary part
        end record;

    subtype POSITIVE_REAL is REAL range 0.0 to REAL'HIGH;

    subtype PRINCIPAL_VALUE is REAL range -MATH_PI to MATH_PI;

    type COMPLEX_POLAR is
        record
                MAG: POSITIVE_REAL;    -- Magnitude
                ARG: PRINCIPAL_VALUE;  -- Angle in radians; -MATH_PI is illegal
        end record;

    --
    -- Constant Definitions
    --
    constant  MATH_CBASE_1: COMPLEX := COMPLEX'(1.0, 0.0);
    constant  MATH_CBASE_J: COMPLEX := COMPLEX'(0.0, 1.0);
    constant  MATH_CZERO: COMPLEX := COMPLEX'(0.0, 0.0);


    --
    -- Overloaded equality and inequality operators for COMPLEX_POLAR
    -- (equality and inequality operators for COMPLEX are predefined)
    --

    function "=" ( L: in COMPLEX_POLAR;  R: in COMPLEX_POLAR ) return BOOLEAN;
        -- Purpose:
        --         Returns TRUE if L is equal to R and returns FALSE otherwise
        -- Special values:
        --         COMPLEX_POLAR'(0.0, X) = COMPLEX_POLAR'(0.0, Y) returns TRUE
        --         regardless of the value of X and Y.
        -- Domain:
        --         L in COMPLEX_POLAR and L.ARG /= -MATH_PI
        --         R in COMPLEX_POLAR and R.ARG /= -MATH_PI
        -- Error conditions:
        --         Error if L.ARG = -MATH_PI
        --         Error if R.ARG = -MATH_PI
        -- Range:
        --         "="(L,R) is either TRUE or FALSE
        -- Notes:
        --         None

    function "/=" ( L: in COMPLEX_POLAR;  R: in COMPLEX_POLAR ) return BOOLEAN;
        -- Purpose:
        --         Returns TRUE if L is not equal to R and returns FALSE
        --         otherwise
        -- Special values:
        --         COMPLEX_POLAR'(0.0, X) /= COMPLEX_POLAR'(0.0, Y) returns
        --         FALSE regardless of the value of X and Y.
        -- Domain:
        --         L in COMPLEX_POLAR and L.ARG /= -MATH_PI
        --         R in COMPLEX_POLAR and R.ARG /= -MATH_PI
        -- Error conditions:
        --         Error if L.ARG = -MATH_PI
        --         Error if R.ARG = -MATH_PI
        -- Range:
        --         "/="(L,R) is either TRUE or FALSE
        -- Notes:
        --         None

    --
    -- Function Declarations
    --
    function CMPLX(X: in REAL;  Y: in REAL:= 0.0 ) return COMPLEX;
        -- Purpose:
        --         Returns COMPLEX number X + iY
        -- Special values:
        --         None
        -- Domain:
        --         X in REAL
        --         Y in REAL
        -- Error conditions:
        --         None
        -- Range:
        --         CMPLX(X,Y) is mathematically unbounded
        -- Notes:
        --         None

    function GET_PRINCIPAL_VALUE(X: in REAL ) return PRINCIPAL_VALUE;
        -- Purpose:
        --         Returns principal value of angle X; X in radians
        -- Special values:
        --         None
        -- Domain:
        --         X in REAL
        -- Error conditions:
        --         None
        -- Range:
        --         -MATH_PI < GET_PRINCIPAL_VALUE(X) <= MATH_PI
        -- Notes:
        --         None

    function COMPLEX_TO_POLAR(Z: in COMPLEX ) return COMPLEX_POLAR;
        -- Purpose:
        --         Returns principal value COMPLEX_POLAR of Z
        -- Special values:
        --         COMPLEX_TO_POLAR(MATH_CZERO) = COMPLEX_POLAR'(0.0, 0.0)
        --         COMPLEX_TO_POLAR(Z) = COMPLEX_POLAR'(ABS(Z.IM),
        --                              SIGN(Z.IM)*MATH_PI_OVER_2) if Z.RE = 0.0
        -- Domain:
        --         Z in COMPLEX
        -- Error conditions:
        --         None
        -- Range:
        --         result.MAG >= 0.0
        --         -MATH_PI < result.ARG <= MATH_PI
        -- Notes:
        --         None

    function POLAR_TO_COMPLEX(Z: in COMPLEX_POLAR ) return COMPLEX;
        -- Purpose:
        --         Returns COMPLEX value of Z
        -- Special values:
        --         None
        -- Domain:
        --         Z in COMPLEX_POLAR and Z.ARG /= -MATH_PI
        -- Error conditions:
        --         Error if Z.ARG = -MATH_PI
        -- Range:
        --         POLAR_TO_COMPLEX(Z) is mathematically unbounded
        -- Notes:
        --         None

    function "ABS"(Z: in COMPLEX ) return POSITIVE_REAL;
        -- Purpose:
        --         Returns absolute value (magnitude) of Z
        -- Special values:
        --         None
        -- Domain:
        --         Z in COMPLEX
        -- Error conditions:
        --         None
        -- Range:
        --         ABS(Z) is mathematically unbounded
        -- Notes:
        --         ABS(Z) = SQRT(Z.RE*Z.RE + Z.IM*Z.IM)

    function "ABS"(Z: in COMPLEX_POLAR ) return POSITIVE_REAL;
        -- Purpose:
        --         Returns absolute value (magnitude) of Z
        -- Special values:
        --         None
        -- Domain:
        --         Z in COMPLEX_POLAR and Z.ARG /= -MATH_PI
        -- Error conditions:
        --         Error if Z.ARG = -MATH_PI
        -- Range:
        --         ABS(Z) >= 0.0
        -- Notes:
        --         ABS(Z) = Z.MAG

    function ARG(Z: in COMPLEX ) return PRINCIPAL_VALUE;
        -- Purpose:
        --         Returns argument (angle) in radians of the principal
        --         value of Z
        -- Special values:
        --         ARG(Z) = 0.0 if Z.RE >= 0.0 and Z.IM = 0.0
        --         ARG(Z) = SIGN(Z.IM)*MATH_PI_OVER_2 if Z.RE = 0.0
        --         ARG(Z) = MATH_PI if Z.RE < 0.0        and Z.IM = 0.0
        -- Domain:
        --         Z in COMPLEX
        -- Error conditions:
        --         None
        -- Range:
        --         -MATH_PI < ARG(Z) <= MATH_PI
        -- Notes:
        --         ARG(Z) = ARCTAN(Z.IM, Z.RE)

    function ARG(Z: in COMPLEX_POLAR ) return PRINCIPAL_VALUE;
        -- Purpose:
        --         Returns argument (angle) in radians of the principal
        --         value of Z
        -- Special values:
        --         None
        -- Domain:
        --         Z in COMPLEX_POLAR and Z.ARG /= -MATH_PI
        -- Error conditions:
        --         Error if Z.ARG = -MATH_PI
        -- Range:
        --         -MATH_PI < ARG(Z) <= MATH_PI
        -- Notes:
        --         ARG(Z) = Z.ARG


    function "-" (Z: in COMPLEX ) return COMPLEX;
        -- Purpose:
        --         Returns unary minus of Z
        -- Special values:
        --         None
        -- Domain:
        --         Z in COMPLEX
        -- Error conditions:
        --         None
        -- Range:
        --         "-"(Z) is mathematically unbounded
        -- Notes:
        --         Returns -x -jy for Z= x + jy

    function "-" (Z: in COMPLEX_POLAR ) return COMPLEX_POLAR;
        -- Purpose:
        --         Returns principal value of unary minus of Z
        -- Special values:
        --         "-"(Z) = COMPLEX_POLAR'(Z.MAG, MATH_PI) if Z.ARG = 0.0
        -- Domain:
        --         Z in COMPLEX_POLAR and Z.ARG /= -MATH_PI
        -- Error conditions:
        --         Error if Z.ARG = -MATH_PI
        -- Range:
        --         result.MAG >= 0.0
        --         -MATH_PI < result.ARG <= MATH_PI
        -- Notes:
        --         Returns COMPLEX_POLAR'(Z.MAG, Z.ARG - SIGN(Z.ARG)*MATH_PI) if
        --                Z.ARG /= 0.0

    function CONJ (Z: in COMPLEX) return COMPLEX;
        -- Purpose:
        --         Returns complex conjugate of Z
        -- Special values:
        --         None
        -- Domain:
        --         Z in COMPLEX
        -- Error conditions:
        --         None
        -- Range:
        --         CONJ(Z) is mathematically unbounded
        -- Notes:
        --         Returns x -jy for Z= x + jy

    function CONJ (Z: in COMPLEX_POLAR) return COMPLEX_POLAR;
        -- Purpose:
        --         Returns principal value of complex conjugate of Z
        -- Special values:
        --         CONJ(Z) = COMPLEX_POLAR'(Z.MAG, MATH_PI) if Z.ARG = MATH_PI
        -- Domain:
        --         Z in COMPLEX_POLAR and Z.ARG /= -MATH_PI
        -- Error conditions:
        --         Error if Z.ARG = -MATH_PI
        -- Range:
        --         result.MAG >= 0.0
        --         -MATH_PI < result.ARG <= MATH_PI
        -- Notes:
        --         Returns COMPLEX_POLAR'(Z.MAG, -Z.ARG) if Z.ARG /= MATH_PI

    function SQRT(Z: in COMPLEX ) return COMPLEX;
        -- Purpose:
        --         Returns square root of Z with positive real part
        --         or, if the real part is zero, the one with nonnegative
        --         imaginary part
        -- Special values:
        --         SQRT(MATH_CZERO) = MATH_CZERO
        -- Domain:
        --         Z in COMPLEX
        -- Error conditions:
        --         None
        -- Range:
        --         SQRT(Z) is mathematically unbounded
        -- Notes:
        --         None

    function SQRT(Z: in COMPLEX_POLAR ) return COMPLEX_POLAR;
        -- Purpose:
        --         Returns square root of Z with positive real part
        --         or, if the real part is zero, the one with nonnegative
        --         imaginary part
        -- Special values:
        --         SQRT(Z) = COMPLEX_POLAR'(0.0, 0.0) if Z.MAG = 0.0
        -- Domain:
        --         Z in COMPLEX_POLAR and Z.ARG /= -MATH_PI
        -- Error conditions:
        --         Error if Z.ARG = -MATH_PI
        -- Range:
        --         result.MAG >= 0.0
        --         -MATH_PI < result.ARG <= MATH_PI
        -- Notes:
        --         None

    function EXP(Z: in COMPLEX ) return COMPLEX;
        -- Purpose:
        --         Returns exponential of Z
        -- Special values:
        --         EXP(MATH_CZERO) = MATH_CBASE_1
        --         EXP(Z) = -MATH_CBASE_1 if Z.RE = 0.0 and ABS(Z.IM) = MATH_PI
        --         EXP(Z) = SIGN(Z.IM)*MATH_CBASE_J if Z.RE = 0.0 and
        --                                          ABS(Z.IM) =  MATH_PI_OVER_2
        -- Domain:
        --         Z in COMPLEX
        -- Error conditions:
        --         None
        -- Range:
        --         EXP(Z) is mathematically unbounded
        -- Notes:
        --         None



    function EXP(Z: in COMPLEX_POLAR ) return COMPLEX_POLAR;
        -- Purpose:
        --         Returns principal value of exponential of Z
        -- Special values:
        --         EXP(Z) = COMPLEX_POLAR'(1.0, 0.0) if Z.MAG =0.0 and
        --                                                        Z.ARG = 0.0
        --         EXP(Z) = COMPLEX_POLAR'(1.0, MATH_PI) if Z.MAG = MATH_PI and
        --                                        ABS(Z.ARG) = MATH_PI_OVER_2
        --         EXP(Z) = COMPLEX_POLAR'(1.0, MATH_PI_OVER_2) if
        --                                        Z.MAG = MATH_PI_OVER_2 and
        --                                        Z.ARG = MATH_PI_OVER_2
        --         EXP(Z) = COMPLEX_POLAR'(1.0, -MATH_PI_OVER_2) if
        --                                        Z.MAG = MATH_PI_OVER_2 and
        --                                        Z.ARG = -MATH_PI_OVER_2
        -- Domain:
        --         Z in COMPLEX_POLAR and Z.ARG /= -MATH_PI
        -- Error conditions:
        --         Error if Z.ARG = -MATH_PI
        -- Range:
        --         result.MAG >= 0.0
        --         -MATH_PI < result.ARG <= MATH_PI
        -- Notes:
        --         None

    function LOG(Z: in COMPLEX ) return COMPLEX;
        -- Purpose:
        --         Returns natural logarithm of Z
        -- Special values:
        --         LOG(MATH_CBASE_1) = MATH_CZERO
        --         LOG(-MATH_CBASE_1) = COMPLEX'(0.0, MATH_PI)
        --         LOG(MATH_CBASE_J) = COMPLEX'(0.0, MATH_PI_OVER_2)
        --         LOG(-MATH_CBASE_J) = COMPLEX'(0.0, -MATH_PI_OVER_2)
        --         LOG(Z) = MATH_CBASE_1 if Z = COMPLEX'(MATH_E, 0.0)
        -- Domain:
        --         Z in COMPLEX and ABS(Z) /= 0.0
        -- Error conditions:
        --         Error if ABS(Z) = 0.0
        -- Range:
        --         LOG(Z) is mathematically unbounded
        -- Notes:
        --         None

    function LOG2(Z: in COMPLEX ) return COMPLEX;
        -- Purpose:
        --         Returns logarithm base 2 of Z
        -- Special values:
        --         LOG2(MATH_CBASE_1) = MATH_CZERO
        --         LOG2(Z) = MATH_CBASE_1 if Z = COMPLEX'(2.0, 0.0)
        -- Domain:
        --         Z in COMPLEX and ABS(Z) /= 0.0
        -- Error conditions:
        --         Error if ABS(Z) = 0.0
        -- Range:
        --         LOG2(Z) is mathematically unbounded
        -- Notes:
        --         None

    function LOG10(Z: in COMPLEX ) return COMPLEX;
        -- Purpose:
        --         Returns logarithm base 10 of Z
        -- Special values:
        --         LOG10(MATH_CBASE_1) = MATH_CZERO
        --         LOG10(Z) = MATH_CBASE_1 if Z = COMPLEX'(10.0, 0.0)
        -- Domain:
        --         Z in COMPLEX and ABS(Z) /= 0.0
        -- Error conditions:
        --         Error if ABS(Z) = 0.0
        -- Range:
        --         LOG10(Z) is mathematically unbounded
        -- Notes:
        --         None

    function LOG(Z: in COMPLEX_POLAR ) return COMPLEX_POLAR;
        -- Purpose:
        --         Returns principal value of natural logarithm of Z
        -- Special values:
        --         LOG(Z) = COMPLEX_POLAR'(0.0, 0.0) if Z.MAG = 1.0 and
        --                                             Z.ARG = 0.0
        --         LOG(Z) = COMPLEX_POLAR'(MATH_PI, MATH_PI_OVER_2) if
        --                              Z.MAG = 1.0 and Z.ARG = MATH_PI
        --         LOG(Z) = COMPLEX_POLAR'(MATH_PI_OVER_2, MATH_PI_OVER_2) if
        --                              Z.MAG = 1.0 and  Z.ARG = MATH_PI_OVER_2
        --         LOG(Z) = COMPLEX_POLAR'(MATH_PI_OVER_2, -MATH_PI_OVER_2) if
        --                              Z.MAG = 1.0 and  Z.ARG = -MATH_PI_OVER_2
        --         LOG(Z) = COMPLEX_POLAR'(1.0, 0.0) if Z.MAG = MATH_E and
        --                                             Z.ARG = 0.0
        -- Domain:
        --         Z in COMPLEX_POLAR and Z.ARG /= -MATH_PI
        --         Z.MAG /= 0.0
        -- Error conditions:
        --         Error if Z.ARG = -MATH_PI
        --         Error if Z.MAG = 0.0
        -- Range:
        --         result.MAG >= 0.0
        --         -MATH_PI < result.ARG <= MATH_PI
        -- Notes:
        --         None

    function LOG2(Z: in COMPLEX_POLAR ) return COMPLEX_POLAR;
        -- Purpose:
        --         Returns principal value of logarithm base 2 of Z
        -- Special values:
        --         LOG2(Z) = COMPLEX_POLAR'(0.0, 0.0) if Z.MAG = 1.0 and
        --                                              Z.ARG = 0.0
        --         LOG2(Z) = COMPLEX_POLAR'(1.0, 0.0) if Z.MAG = 2.0 and
        --                                             Z.ARG = 0.0
        -- Domain:
        --         Z in COMPLEX_POLAR and Z.ARG /= -MATH_PI
        --         Z.MAG /= 0.0
        -- Error conditions:
        --         Error if Z.ARG = -MATH_PI
        --         Error if Z.MAG = 0.0
        -- Range:
        --         result.MAG >= 0.0
        --         -MATH_PI < result.ARG <= MATH_PI
        -- Notes:
        --        None

    function LOG10(Z: in COMPLEX_POLAR ) return COMPLEX_POLAR;
        -- Purpose:
        --         Returns principal value of logarithm base 10 of Z
        -- Special values:
        --         LOG10(Z) = COMPLEX_POLAR'(0.0, 0.0) if Z.MAG = 1.0 and
        --                                               Z.ARG = 0.0
        --         LOG10(Z) = COMPLEX_POLAR'(1.0, 0.0) if Z.MAG = 10.0 and
        --                                               Z.ARG = 0.0
        -- Domain:
        --         Z in COMPLEX_POLAR and Z.ARG /= -MATH_PI
        --         Z.MAG /= 0.0
        -- Error conditions:
        --         Error if Z.ARG = -MATH_PI
        --         Error if Z.MAG = 0.0
        -- Range:
        --         result.MAG >= 0.0
        --         -MATH_PI < result.ARG <= MATH_PI
        -- Notes:
        --         None

    function LOG(Z: in COMPLEX; BASE: in REAL) return COMPLEX;
        -- Purpose:
        --         Returns logarithm base BASE of Z
        -- Special values:
        --         LOG(MATH_CBASE_1, BASE) = MATH_CZERO
        --         LOG(Z,BASE) = MATH_CBASE_1 if Z = COMPLEX'(BASE, 0.0)
        -- Domain:
        --         Z in COMPLEX and ABS(Z) /= 0.0
        --         BASE > 0.0
        --         BASE /= 1.0
        -- Error conditions:
        --         Error if ABS(Z) = 0.0
        --         Error if BASE <= 0.0
        --         Error if BASE = 1.0
        -- Range:
        --         LOG(Z,BASE) is mathematically unbounded
        -- Notes:
        --         None

    function LOG(Z: in COMPLEX_POLAR; BASE: in REAL ) return COMPLEX_POLAR;
        -- Purpose:
        --         Returns principal value of logarithm base BASE of Z
        -- Special values:
        --         LOG(Z, BASE) = COMPLEX_POLAR'(0.0, 0.0) if Z.MAG = 1.0 and
        --                                                Z.ARG = 0.0
        --         LOG(Z, BASE) = COMPLEX_POLAR'(1.0, 0.0) if Z.MAG = BASE and
        --                                                Z.ARG = 0.0
        -- Domain:
        --         Z in COMPLEX_POLAR and Z.ARG /= -MATH_PI
        --         Z.MAG /= 0.0
        --         BASE > 0.0
        --         BASE /= 1.0
        -- Error conditions:
        --         Error if Z.ARG = -MATH_PI
        --         Error if Z.MAG = 0.0
        --         Error if BASE <= 0.0
        --         Error if BASE = 1.0
        -- Range:
        --         result.MAG >= 0.0
        --         -MATH_PI < result.ARG <= MATH_PI
        -- Notes:
        --         None

    function SIN (Z : in COMPLEX ) return COMPLEX;
        -- Purpose:
        --         Returns sine of Z
        -- Special values:
        --         SIN(MATH_CZERO) = MATH_CZERO
        --         SIN(Z) = MATH_CZERO if Z = COMPLEX'(MATH_PI, 0.0)
        -- Domain:
        --         Z in COMPLEX
        -- Error conditions:
        --         None
        -- Range:
        --         ABS(SIN(Z)) <= SQRT(SIN(Z.RE)*SIN(Z.RE) +
        --                                         SINH(Z.IM)*SINH(Z.IM))
        -- Notes:
        --         None

    function SIN (Z : in COMPLEX_POLAR ) return COMPLEX_POLAR;
        -- Purpose:
        --         Returns principal value of sine of Z
        -- Special values:
        --         SIN(Z) = COMPLEX_POLAR'(0.0, 0.0) if Z.MAG = 0.0 and
        --                                            Z.ARG = 0.0
        --         SIN(Z) = COMPLEX_POLAR'(0.0, 0.0) if Z.MAG = MATH_PI and
        --                                            Z.ARG = 0.0
        -- Domain:
        --         Z in COMPLEX_POLAR and Z.ARG /= -MATH_PI
        -- Error conditions:
        --         Error if Z.ARG = -MATH_PI
        -- Range:
        --         result.MAG >= 0.0
        --         -MATH_PI < result.ARG <= MATH_PI
        -- Notes:
        --         None

    function  COS (Z : in COMPLEX ) return COMPLEX;
        -- Purpose:
        --         Returns cosine of Z
        -- Special values:
        --         COS(Z) = MATH_CZERO if Z = COMPLEX'(MATH_PI_OVER_2, 0.0)
        --         COS(Z) = MATH_CZERO if Z = COMPLEX'(-MATH_PI_OVER_2, 0.0)
        -- Domain:
        --         Z in COMPLEX
        -- Error conditions:
        --         None
        -- Range:
        --         ABS(COS(Z)) <= SQRT(COS(Z.RE)*COS(Z.RE) +
        --                                         SINH(Z.IM)*SINH(Z.IM))
        -- Notes:
        --         None


    function  COS (Z : in COMPLEX_POLAR ) return COMPLEX_POLAR;
        -- Purpose:
        --         Returns principal value of cosine of Z
        -- Special values:
        --         COS(Z) = COMPLEX_POLAR'(0.0, 0.0) if Z.MAG = MATH_PI_OVER_2
        --                                               and Z.ARG = 0.0
        --         COS(Z) = COMPLEX_POLAR'(0.0, 0.0) if Z.MAG = MATH_PI_OVER_2
        --                                               and Z.ARG = MATH_PI
        -- Domain:
        --         Z in COMPLEX_POLAR and Z.ARG /= -MATH_PI
        -- Error conditions:
        --         Error if Z.ARG = -MATH_PI
        -- Range:
        --         result.MAG >= 0.0
        --         -MATH_PI < result.ARG <= MATH_PI
        -- Notes:
        --         None

    function SINH (Z : in COMPLEX ) return COMPLEX;
        -- Purpose:
        --         Returns hyperbolic sine of Z
        -- Special values:
        --         SINH(MATH_CZERO) = MATH_CZERO
        --         SINH(Z) = MATH_CZERO if Z.RE = 0.0 and Z.IM = MATH_PI
        --         SINH(Z) = MATH_CBASE_J if Z.RE = 0.0 and
        --                                               Z.IM = MATH_PI_OVER_2
        --         SINH(Z) = -MATH_CBASE_J if Z.RE = 0.0 and
        --                                               Z.IM = -MATH_PI_OVER_2
        -- Domain:
        --         Z in COMPLEX
        -- Error conditions:
        --         None
        -- Range:
        --         ABS(SINH(Z)) <= SQRT(SINH(Z.RE)*SINH(Z.RE) +
        --                                         SIN(Z.IM)*SIN(Z.IM))
        -- Notes:
        --         None

    function SINH (Z : in COMPLEX_POLAR ) return COMPLEX_POLAR;
        -- Purpose:
        --         Returns principal value of hyperbolic sine of Z
        -- Special values:
        --         SINH(Z) = COMPLEX_POLAR'(0.0, 0.0) if Z.MAG = 0.0 and
        --                                            Z.ARG = 0.0
        --         SINH(Z) = COMPLEX_POLAR'(0.0, 0.0) if Z.MAG = MATH_PI and
        --                                            Z.ARG = MATH_PI_OVER_2
        --         SINH(Z) = COMPLEX_POLAR'(1.0, MATH_PI_OVER_2) if Z.MAG =
        --                         MATH_PI_OVER_2 and Z.ARG = MATH_PI_OVER_2
        --         SINH(Z) = COMPLEX_POLAR'(1.0, -MATH_PI_OVER_2) if Z.MAG =
        --                         MATH_PI_OVER_2 and Z.ARG = -MATH_PI_OVER_2
        -- Domain:
        --         Z in COMPLEX_POLAR and Z.ARG /= -MATH_PI
        -- Error conditions:
        --         Error if Z.ARG = -MATH_PI
        -- Range:
        --         result.MAG >= 0.0
        --         -MATH_PI < result.ARG <= MATH_PI
        -- Notes:
        --         None

    function COSH (Z : in COMPLEX ) return COMPLEX;
        -- Purpose:
        --         Returns hyperbolic cosine of Z
        -- Special values:
        --         COSH(MATH_CZERO) = MATH_CBASE_1
        --         COSH(Z) = -MATH_CBASE_1 if Z.RE = 0.0 and Z.IM = MATH_PI
        --         COSH(Z) = MATH_CZERO if Z.RE = 0.0 and Z.IM = MATH_PI_OVER_2
        --         COSH(Z) = MATH_CZERO if Z.RE = 0.0 and Z.IM = -MATH_PI_OVER_2
        -- Domain:
        --         Z in COMPLEX
        -- Error conditions:
        --         None
        -- Range:
        --         ABS(COSH(Z)) <= SQRT(SINH(Z.RE)*SINH(Z.RE) +
        --                                         COS(Z.IM)*COS(Z.IM))
        -- Notes:
        --         None


    function COSH (Z : in COMPLEX_POLAR ) return COMPLEX_POLAR;
        -- Purpose:
        --         Returns principal value of hyperbolic cosine of Z
        -- Special values:
        --         COSH(Z) = COMPLEX_POLAR'(1.0, 0.0) if Z.MAG = 0.0 and
        --                                            Z.ARG = 0.0
        --         COSH(Z) = COMPLEX_POLAR'(1.0, MATH_PI) if Z.MAG = MATH_PI and
        --                                            Z.ARG = MATH_PI_OVER_2
        --         COSH(Z) = COMPLEX_POLAR'(0.0, 0.0) if Z.MAG =
        --                        MATH_PI_OVER_2 and Z.ARG = MATH_PI_OVER_2
        --         COSH(Z) = COMPLEX_POLAR'(0.0, 0.0) if Z.MAG =
        --                        MATH_PI_OVER_2 and Z.ARG = -MATH_PI_OVER_2
        -- Domain:
        --         Z in COMPLEX_POLAR and Z.ARG /= -MATH_PI
        -- Error conditions:
        --         Error if Z.ARG = -MATH_PI
        -- Range:
        --         result.MAG >= 0.0
        --         -MATH_PI < result.ARG <= MATH_PI
        -- Notes:
        --         None

    --
    -- Arithmetic Operators
    --

    function "+" ( L: in COMPLEX;  R: in COMPLEX ) return COMPLEX;
        -- Purpose:
        --         Returns arithmetic addition of L and R
        -- Special values:
        --         None
        -- Domain:
        --         L in COMPLEX
        --         R in COMPLEX
        -- Error conditions:
        --         None
        -- Range:
        --         "+"(Z) is mathematically unbounded
        -- Notes:
        --         None

    function "+" ( L: in REAL;     R: in COMPLEX ) return COMPLEX;
        -- Purpose:
        --         Returns arithmetic addition of L and R
        -- Special values:
        --         None
        -- Domain:
        --         L in REAL
        --         R in COMPLEX
        -- Error conditions:
        --         None
        -- Range:
        --         "+"(Z) is mathematically unbounded
        -- Notes:
        --         None

    function "+" ( L: in COMPLEX;  R: in REAL )    return COMPLEX;
        -- Purpose:
        --         Returns arithmetic addition of L and R
        -- Special values:
        --         None
        -- Domain:
        --         L in COMPLEX
        --         R in REAL
        -- Error conditions:
        --         None
        -- Range:
        --         "+"(Z) is mathematically unbounded
        -- Notes:
        --         None

    function "+" ( L: in COMPLEX_POLAR; R: in COMPLEX_POLAR)
                                                        return COMPLEX_POLAR;
        -- Purpose:
        --         Returns arithmetic addition of L and R
        -- Special values:
        --         None
        -- Domain:
        --         L in COMPLEX_POLAR and L.ARG /= -MATH_PI
        --         R in COMPLEX_POLAR and R.ARG /= -MATH_PI
        -- Error conditions:
        --         Error if L.ARG = -MATH_PI
        --         Error if R.ARG = -MATH_PI
        -- Range:
        --         result.MAG >= 0.0
        --         -MATH_PI < result.ARG <= MATH_PI
        -- Notes:
        --         None


    function "+" ( L: in REAL;  R: in COMPLEX_POLAR) return COMPLEX_POLAR;
        -- Purpose:
        --         Returns arithmetic addition of L and R
        -- Special values:
        --         None
        -- Domain:
        --         L in REAL
        --         R in COMPLEX_POLAR and R.ARG /= -MATH_PI
        -- Error conditions:
        --         Error if R.ARG = -MATH_PI
        -- Range:
        --         result.MAG >= 0.0
        --         -MATH_PI < result.ARG <= MATH_PI
        -- Notes:
        --         None

    function "+" ( L: in COMPLEX_POLAR;  R: in REAL) return COMPLEX_POLAR;
        -- Purpose:
        --         Returns arithmetic addition of L and R
        -- Special values:
        --         None
        -- Domain:
        --         L in COMPLEX_POLAR and L.ARG /= -MATH_PI
        --         R in REAL
        -- Error conditions:
        --         Error if L.ARG = -MATH_PI
        -- Range:
        --         result.MAG >= 0.0
        --         -MATH_PI < result.ARG <= MATH_PI
        -- Notes:
        --         None

    function "-" ( L: in COMPLEX;  R: in COMPLEX ) return COMPLEX;
        -- Purpose:
        --         Returns arithmetic subtraction of L minus R
        -- Special values:
        --         None
        -- Domain:
        --         L in COMPLEX
        --         R in COMPLEX
        -- Error conditions:
        --         None
        -- Range:
        --         "-"(Z) is mathematically unbounded
        -- Notes:
        --         None

    function "-" ( L: in REAL;     R: in COMPLEX ) return COMPLEX;
        -- Purpose:
        --         Returns arithmetic subtraction of L minus R
        -- Special values:
        --         None
        -- Domain:
        --         L in REAL
        --         R in COMPLEX
        -- Error conditions:
        --         None
        -- Range:
        --         "-"(Z) is mathematically unbounded
        -- Notes:
        --         None

    function "-" ( L: in COMPLEX;  R: in REAL )    return COMPLEX;
        -- Purpose:
        --         Returns arithmetic subtraction of L minus R
        -- Special values:
        --         None
        -- Domain:
        --         L in COMPLEX
        --         R in REAL
        -- Error conditions:
        --         None
        -- Range:
        --         "-"(Z) is mathematically unbounded
        -- Notes:
        --         None

    function "-" ( L: in COMPLEX_POLAR; R: in COMPLEX_POLAR)
                                                        return COMPLEX_POLAR;
        -- Purpose:
        --         Returns arithmetic subtraction of L minus R
        -- Special values:
        --         None
        -- Domain:
        --         L in COMPLEX_POLAR and L.ARG /= -MATH_PI
        --         R in COMPLEX_POLAR and R.ARG /= -MATH_PI
        -- Error conditions:
        --         Error if L.ARG = -MATH_PI
        --         Error if R.ARG = -MATH_PI
        -- Range:
        --         result.MAG >= 0.0
        --         -MATH_PI < result.ARG <= MATH_PI
        -- Notes:
        --         None

    function "-" ( L: in REAL;  R: in COMPLEX_POLAR) return COMPLEX_POLAR;
        -- Purpose:
        --         Returns arithmetic subtraction of L minus R
        -- Special values:
        --         None
        -- Domain:
        --         L in REAL
        --         R in COMPLEX_POLAR and R.ARG /= -MATH_PI
        -- Error conditions:
        --         Error if R.ARG = -MATH_PI
        -- Range:
        --         result.MAG >= 0.0
        --         -MATH_PI < result.ARG <= MATH_PI
        -- Notes:
        --         None


    function "-" ( L: in COMPLEX_POLAR;  R: in REAL) return COMPLEX_POLAR;
        -- Purpose:
        --         Returns arithmetic subtraction of L minus R
        -- Special values:
        --         None
        -- Domain:
        --         L in COMPLEX_POLAR and L.ARG /= -MATH_PI
        --         R in REAL
        -- Error conditions:
        --         Error if L.ARG = -MATH_PI
        -- Range:
        --         result.MAG >= 0.0
        --         -MATH_PI < result.ARG <= MATH_PI
        -- Notes:
        --         None

    function "*" ( L: in COMPLEX;  R: in COMPLEX ) return COMPLEX;
        -- Purpose:
        --         Returns arithmetic multiplication of L and R
        -- Special values:
        --         None
        -- Domain:
        --         L in COMPLEX
        --         R in COMPLEX
        -- Error conditions:
        --         None
        -- Range:
        --         "*"(Z) is mathematically unbounded
        -- Notes:
        --         None

    function "*" ( L: in REAL;  R: in COMPLEX ) return COMPLEX;
        -- Purpose:
        --         Returns arithmetic multiplication of L and R
        -- Special values:
        --         None
        -- Domain:
        --         L in REAL
        --         R in COMPLEX
        -- Error conditions:
        --         None
        -- Range:
        --         "*"(Z) is mathematically unbounded
        -- Notes:
        --         None

    function "*" ( L: in COMPLEX;  R: in REAL )  return COMPLEX;
        -- Purpose:
        --         Returns arithmetic multiplication of L and R
        -- Special values:
        --         None
        -- Domain:
        --         L in COMPLEX
        --         R in REAL
        -- Error conditions:
        --         None

        -- Range:
        --         "*"(Z) is mathematically unbounded
        -- Notes:
        --         None

    function "*" ( L: in COMPLEX_POLAR; R: in COMPLEX_POLAR)
                                                        return COMPLEX_POLAR;
        -- Purpose:
        --         Returns arithmetic multiplication of L and R
        -- Special values:
        --         None
        -- Domain:
        --         L in COMPLEX_POLAR and L.ARG /= -MATH_PI
        --         R in COMPLEX_POLAR and R.ARG /= -MATH_PI
        -- Error conditions:
        --         Error if L.ARG = -MATH_PI
        --         Error if R.ARG = -MATH_PI
        -- Range:
        --         result.MAG >= 0.0
        --         -MATH_PI < result.ARG <= MATH_PI
        -- Notes:
        --         None

    function "*" ( L: in REAL;  R: in COMPLEX_POLAR) return COMPLEX_POLAR;
        -- Purpose:
        --         Returns arithmetic multiplication of L and R
        -- Special values:
        --         None
        -- Domain:
        --         L in REAL
        --         R in COMPLEX_POLAR and R.ARG /= -MATH_PI
        -- Error conditions:
        --         Error if R.ARG = -MATH_PI
        -- Range:
        --         result.MAG >= 0.0
        --         -MATH_PI < result.ARG <= MATH_PI
        -- Notes:
        --         None

    function "*" ( L: in COMPLEX_POLAR;  R: in REAL) return COMPLEX_POLAR;
        -- Purpose:
        --         Returns arithmetic multiplication of L and R
        -- Special values:
        --         None
        -- Domain:
        --         L in COMPLEX_POLAR and L.ARG /= -MATH_PI
        --         R in REAL
        -- Error conditions:
        --         Error if L.ARG = -MATH_PI
        -- Range:
        --         result.MAG >= 0.0
        --         -MATH_PI < result.ARG <= MATH_PI
        -- Notes:
        --         None


    function "/" ( L: in COMPLEX;  R: in COMPLEX ) return COMPLEX;
        -- Purpose:
        --         Returns arithmetic division of L by R
        -- Special values:
        --         None
        -- Domain:
        --         L in COMPLEX
        --         R in COMPLEX and R /= MATH_CZERO
        -- Error conditions:
        --         Error if R = MATH_CZERO
        -- Range:
        --         "/"(Z) is mathematically unbounded
        -- Notes:
        --         None

    function "/" ( L: in REAL;  R: in COMPLEX ) return COMPLEX;
        -- Purpose:
        --         Returns arithmetic division of L by R
        -- Special values:
        --         None
        -- Domain:
        --         L in REAL
        --         R in COMPLEX and R /= MATH_CZERO
        -- Error conditions:
        --         Error if R = MATH_CZERO
        -- Range:
        --         "/"(Z) is mathematically unbounded
        -- Notes:
        --         None

    function "/" ( L: in COMPLEX;  R: in REAL )    return COMPLEX;
        -- Purpose:
        --         Returns arithmetic division of L by R
        -- Special values:
        --         None
        -- Domain:
        --         L in COMPLEX
        --         R in REAL and R /= 0.0
        -- Error conditions:
        --         Error if R = 0.0
        -- Range:
        --         "/"(Z) is mathematically unbounded
        -- Notes:
        --         None

    function "/" ( L: in COMPLEX_POLAR; R: in COMPLEX_POLAR)
                                                        return COMPLEX_POLAR;
        -- Purpose:
        --         Returns arithmetic division of L by R
        -- Special values:
        --         None
        -- Domain:
        --         L in COMPLEX_POLAR and L.ARG /= -MATH_PI
        --         R in COMPLEX_POLAR and R.ARG /= -MATH_PI
        --         R.MAG > 0.0
        -- Error conditions:
        --         Error if R.MAG <= 0.0
        --         Error if L.ARG = -MATH_PI
        --         Error if R.ARG = -MATH_PI
        -- Range:
        --         result.MAG >= 0.0
        --         -MATH_PI < result.ARG <= MATH_PI
        -- Notes:
        --         None

    function "/" ( L: in REAL;  R: in COMPLEX_POLAR) return COMPLEX_POLAR;
        -- Purpose:
        --         Returns arithmetic division of L by R
        -- Special values:
        --         None
        -- Domain:
        --         L in REAL
        --         R in COMPLEX_POLAR and R.ARG /= -MATH_PI
        --         R.MAG > 0.0
        -- Error conditions:
        --         Error if R.MAG <= 0.0
        --         Error if R.ARG = -MATH_PI
        -- Range:
        --         result.MAG >= 0.0
        --         -MATH_PI < result.ARG <= MATH_PI
        -- Notes:
        --         None

    function "/" ( L: in COMPLEX_POLAR;  R: in REAL) return COMPLEX_POLAR;
        -- Purpose:
        --         Returns arithmetic division of L by R
        -- Special values:
        --         None
        -- Domain:
        --         L in COMPLEX_POLAR and L.ARG /= -MATH_PI
        --         R /= 0.0
        -- Error conditions:
        --         Error if L.ARG = -MATH_PI
        --         Error if R = 0.0
        -- Range:
        --         result.MAG >= 0.0
        --         -MATH_PI < result.ARG <= MATH_PI
        -- Notes:
        --         None
end  MATH_COMPLEX;