summaryrefslogtreecommitdiff
path: root/sci_gateway/cpp/sci_octave.cpp
blob: f106be31756c4aea38c0c89aeecc732db5eca728 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
// Copyright (C) 2019 - IIT Bombay - FOSSEE
//
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution.  The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
// Author: Rupak Rokade
// Organization: FOSSEE, IIT Bombay
// Email: toolbox@scilab.in

#include <iostream>
#include <string>
#include "wchar.h"
#include <cstdlib>
#include <sstream>

extern "C"
{
#include <Scierror.h>
#include <sciprint.h>
#include <api_scilab.h>
#include "localization.h"
#include "fun.h"
#include <cstdio>
#include <math.h>
#include <stdio.h>
#include "os_string.h"
#include <stdlib.h>

	static const char fname[] = "octave_fun";

	/**
	 * @brief Function to connect to Scilab's API.
	 * 
	 *	This function will get Data from Scilab, proccess the data
	 *	in Octave then return the output back to Scilab using the 
	 *	API.
	 * 
	 * @param env Scialb env
	 * @param nin[in] Number of input arguments
	 * @param in[in] Input Parameters
	 * @param nopt[in] Number of optional parameters
	 * @param opt[in] Optional parameters
	 * @param nout[out] Number of expected output parametets
	 * @param out[out] Array for output data
	 * @return int 
	 */
	int sci_octave_fun(scilabEnv env, int nin, scilabVar *in, int nopt, scilabOpt *opt, int nout, scilabVar *out)

	{
		//DEBUG//printf("nin: %d\n", nin);
		// Check number of inputs
		if (nin < 1)
		{
			Scierror(999, _("%s: Wrong number of input arguments. Atleast %d expected.\n"), fname, 2);
			return STATUS_ERROR;
		}

		// Declare and initialize the API variables
		FUNCCALL funcall;
		FUNCCALL *funptr = &funcall;
		funcall.n_in_arguments = nin;
		funcall.n_out_user = nout;
		FUNCARGS ins[funcall.n_in_arguments * nout];
		FUNCARGS *argptr = ins;

		int i, j;
		double *d;
		double *rd = NULL;
		double *cd = NULL;
		int size;
		char str[20];
		char *c;
		double *n = NULL;
		int row = 0;
		int col = 0;
		double *in_real;
		double *in_img;



		// Check the data type of input variables and format them into the FUNNCALL
		for (i = 0; i < nin; i++)
		{
			// Check if [in] of type Sci:matrix
			if (scilab_getType(env, in[i]) == 1)
			{
				ins[i].type = TYPE_DOUBLE;

				// Check if [in] is of type Sci:complex
				if (scilab_isComplex(env, in[i]) == 1)
				{
					//DEBUG//printf("input %d is complex \n", i);
					ins[i].is_in_cmplx = 1;
					size = scilab_getDim2d(env, in[i], &row, &col);
					ins[i].n_in_rows = row;
					ins[i].n_in_cols = col;
					scilab_getDoubleComplexArray(env, in[i], &in_real, &in_img);

					ins[i].in_data_real = malloc(sizeof(double) * size);
					ins[i].in_data_img = malloc(sizeof(double) * size);
					rd = (double *)ins[i].in_data_real;
					cd = (double *)ins[i].in_data_img;

					////This code snippet is to flatten matrix row wise and then store it
					int p, q, k = 0;
					for (p = 0; p < row; p++)
					{
						for (q = 0; q < col; q++)
						{
							rd[k] = in_real[p + q * row];
							cd[k] = in_img[p + q * row];
							k++;
							//printf("%d\n",in_real[k]);
							//printf("%d\n",in_img[k]);
						}
					}
				}
				// [in] is not of type Sci:complex
				else
				{
					//DEBUG//printf("input %d is NOT complex \n", i);
					ins[i].is_in_cmplx = 0;
					size = scilab_getDim2d(env, in[i], &row, &col);
					ins[i].n_in_rows = row;
					ins[i].n_in_cols = col;
					scilab_getDoubleArray(env, in[i], &n);

					ins[i].in_data_real = malloc(sizeof(double) * size);
					d = (double *)ins[i].in_data_real;

					//DEBUG//This code snippet is to flatten matrix row wise and then store it
					int p, q, k = 0;
					for (p = 0; p < row; p++)
					{
						for (q = 0; q < col; q++)
						{
							d[k] = n[p + q * row];
							k++;
							//printf("%f\n",d[j]);
						}
					}
				}
			}
			// Check if [in] of type SCI:Matrix of strings
			else if (scilab_getType(env, in[i]) == 10)
			{
				ins[i].is_in_cmplx = 0;
				wchar_t *in1 = 0;

				scilab_getString(env, in[i], &in1);
				//printf("%S\n", in1);

				wcstombs(str, in1, sizeof(str));
				//printf("%s\n", str);
				if (str)
				{
					//printf("lenght of string input: %d\n", strlen(str));
					ins[i].type = TYPE_STRING;
					ins[i].n_in_rows = 1;
					ins[i].n_in_cols = strlen(str);
					size = (ins[i].n_in_rows) * (ins[i].n_in_cols);
					ins[i].in_data_real = malloc(sizeof(char) * (size + 1));
					c = (char *)ins[i].in_data_real;
					int ci;

					strcpy(c, str);
					ins[i].n_in_cols = strlen(c);
					//printf("in scilab strin is: %s\n", c);
				}
			}
			// Check if  [in] of type Sci:struct
			else if (scilab_getType(env, in[i]) == 18) 
			{
				ins[i].type = TYPE_STRUCT;
				wchar_t **keys = NULL;
				scilabVar struct_out;
				int dims = 0;

				dims = scilab_getFields(env, in[i], &keys); // Retrieving Struct Keys
				ins[i].n_in_struct_len = dims;
				//std::cout<<dims<<std::endl;

				// allocating memory for keys and values
				ins[i].in_struct = (FUNCSTRUCT *)malloc(sizeof(FUNCSTRUCT) * dims);
				FUNCSTRUCT *inStruct = ins[i].in_struct;

				for (j = 0; j < dims; j++)
				{
					// storing the key
					inStruct[j].key = malloc(sizeof(keys[j]) + 1);
					wcpcpy((wchar_t *)inStruct[j].key, keys[j]);

					struct_out = scilab_getStructMatrix2dData(env, in[i], keys[j], 0, 0); // Retrieving Curr Value

					// Checking Type of value in struct
					if (scilab_getType(env, struct_out) == 1)
					{
						// Double Value
						if (scilab_isComplex(env, struct_out) == 1)
						{
							// Complex Value
							//printf("input %d is complex \n", i)
							inStruct[j].type = TYPE_COMPLEX;
							size = scilab_getDim2d(env, struct_out, &row, &col);
							inStruct[j].rows = row;
							inStruct[j].cols = col;
							scilab_getDoubleComplexArray(env, struct_out, &in_real, &in_img);

							inStruct[j].dataReal = malloc(sizeof(double) * size);
							inStruct[j].dataImg = malloc(sizeof(double) * size);
							rd = (double *)inStruct[j].dataReal;
							cd = (double *)inStruct[j].dataImg;

							////This code snippet is to flatten matrix row wise and then store it
							int p, q, k = 0;
							for (p = 0; p < row; p++)
							{
								for (q = 0; q < col; q++)
								{
									// printf("%d\n",in_real[p + q * row]);
									// printf("%d\n",in_img[p + q * row]);
									rd[k] = in_real[p + q * row];
									cd[k] = in_img[p + q * row];
									k++;
								}
							}
						}
						else
						{
							// Real Values Only
							inStruct[j].type = TYPE_DOUBLE;
							//printf("input %d is NOT complex \n", i);
							size = scilab_getDim2d(env, struct_out, &row, &col);
							scilab_getDoubleArray(env, struct_out, &n);

							inStruct[j].rows = row;
							inStruct[j].cols = col;

							inStruct[j].dataReal = malloc(sizeof(double) * size);
							d = (double *)inStruct[j].dataReal;

							////This code snippet is to flatten matrix row wise and then store it
							int p, q, k = 0;
							for (p = 0; p < row; p++)
							{
								for (q = 0; q < col; q++)
								{
									// printf("%f\n",n[k]);
									d[k] = n[k];
									k++;
								}
							}
						}
					}
					else if (scilab_getType(env, struct_out) == 10)
					{
						inStruct[j].type = TYPE_STRING;
						wchar_t *in1 = NULL;

						scilab_getString(env, struct_out, &in1);
						//printf("%S\n", in1);

						inStruct[j].str = malloc(sizeof(wchar_t) * (wcslen(in1) + 1));
						wcpcpy((wchar_t *)inStruct[j].str, in1);
						// printf("%s\n", str);
					}
					else
					{
						Scierror(999, _("%s: Wrong type of input argument %d.\n"), fname, i);
						return STATUS_ERROR;
					}
				}
			}
			else
			{
				Scierror(999, _("%s: Wrong type of input argument %d.\n"), fname, i);
				return STATUS_ERROR;
			}
		}

		// Capturing Errors and warnings
		std::stringstream buffer_err;

		// set our error buffer
		std::cerr.rdbuf(buffer_err.rdbuf());

		// call the fun() function
		int status_fun = fun(argptr, funptr);

		// grab error buffer contents
		std::string err = buffer_err.str();

		if (!err.empty() && status_fun == 0)
			sciprint("Warning from Octave\n%s", err.c_str());
		buffer_err.str("");

		//printf("in scilab status_fun is: %d\n", status_fun);
		//printf("in scilab funcall.n_out_arguments is: %d\n", funcall.n_out_arguments);
		//printf("in scilab funcall.n_out_user is: %d\n", funcall.n_out_user);
		//printf("in scilab ins[0].n_out_rows is: %d\n", ins[0].n_out_rows);
		//printf("in scilab ins[0].n_out_cols is: %d\n", ins[0].n_out_cols);
		//printf("in scilab ouput args are: %d\n", funcall.n_out_arguments);

		if (status_fun == 1)
		{
			Scierror(999, "Error from Octave\n%s", err.c_str());
			return 1;
		}
		// Format output variable for SciLab
		else if (funcall.n_out_user <= funcall.n_out_arguments)
		{
			for (i = 0; i < nout; i++)
			{
				// Format Complex data type
				if (ins[i].is_out_cmplx == 1)
				{
					//printf("output %d is complex\n", i);
					out[i] = scilab_createDoubleMatrix2d(env, ins[i].n_out_rows, ins[i].n_out_cols, 1);
					double *out_real = NULL;
					double *out_img = NULL;
					scilab_getDoubleComplexArray(env, out[i], &out_real, &out_img);
					int len = ins[i].n_out_rows * ins[i].n_out_cols;
					double *ord = (double *)ins[i].out_data_real;
					double *ocd = (double *)ins[i].out_data_img;
					//printf("output length is: %d\n", len);
					for (j = 0; j < len; j++)
					{
						out_real[j] = ord[j];
					}

					for (j = 0; j < len; j++)
					{
						out_img[j] = ocd[j];
					}
				}
				// Format Struct data type
				else if (ins[i].is_out_struct == 1)
				{
					// creating scilab struct
					out[i] = scilab_createStruct(env);
					int structLen = ins[i].n_out_struct_len;

					FUNCSTRUCT *outStruct = ins[i].out_struct;

					for (int j = 0; j < structLen; j++)
					{
						// std::printf("currKey in sciOctave.cpp OP: %ls\n", outStruct[j].key);
						scilab_addField(env, out[i], (const wchar_t *)outStruct[j].key);
						scilabVar currValue = NULL;
						if (outStruct[j].type == TYPE_COMPLEX)
						{
							currValue = scilab_createDoubleMatrix2d(env, outStruct[j].rows, outStruct[j].cols, 1);

							double *outReal = NULL;
							double *outImg = NULL;
							scilab_getDoubleComplexArray(env, currValue, &outReal, &outImg);

							double *dReal = (double *)outStruct[j].dataReal;
							double *dImg = (double *)outStruct[j].dataImg;

							int size = outStruct[j].rows * outStruct[j].cols;
							for (int k = 0; k < size; k++)
							{
								outReal[k] = dReal[k];
							}
							for (int k = 0; k < size; k++)
							{
								outImg[k] = dImg[k];
							}

							// set the key-value pair in scilab struct
							scilab_setStructMatrix2dData(env, out[i], (const wchar_t *)outStruct[j].key, 0, 0, currValue);
						}
						else if (outStruct[j].type == TYPE_DOUBLE)
						{
							currValue = scilab_createDoubleMatrix2d(env, outStruct[j].rows, outStruct[j].cols, 1);

							double *outReal = NULL;
							scilab_getDoubleArray(env, currValue, &outReal);

							double *dReal = (double *)outStruct[j].dataReal;

							int size = outStruct[j].rows * outStruct[j].cols;
							for (int k = 0; k < size; k++)
							{
								outReal[k] = dReal[k];
							}

							// set the key-value pair in scilab struct
							scilab_setStructMatrix2dData(env, out[i], (const wchar_t *)outStruct[j].key, 0, 0, currValue);
						}
						else if (outStruct[j].type == TYPE_STRING)
						{
							scilab_setStructMatrix2dData(env, out[i], (const wchar_t *)outStruct[j].key, 0, 0, scilab_createString(env, (const wchar_t *)outStruct[j].str));
						}
					}
				}
				// Format Double data type
				else
				{
					//printf("output %d is NOT complex\n", i);
					out[i] = scilab_createDoubleMatrix2d(env, ins[i].n_out_rows, ins[i].n_out_cols, 0);
					double *out1 = NULL;
					scilab_getDoubleArray(env, out[i], &out1);
					int len = ins[i].n_out_rows * ins[i].n_out_cols;
					double *dd = (double *)ins[i].out_data_real;
					//printf("output length is: %d\n", len);
					for (j = 0; j < len; j++)
					{
						out1[j] = dd[j]; //.float_value();
					}
				}
			}
		}
		else
		{
			Scierror(77, _("%s: Wrong number of output arguments: This function can return a maximum of %d output(s).\n"), fname, funcall.n_out_arguments);
			return 1;
		}

		// Free the mem allocated for out variables
		for (i = 0; i < nout; i++)
		{
			// 
			if (ins[i].is_out_struct == 1)
			{
				FUNCSTRUCT *tempStruct = ins[i].out_struct;
				for (int j = 0; j < ins[i].n_out_struct_len; j++)
				{
					// std::wstring tempWStr((wchar_t *) tempStruct[j].key);
					// std::string(tempWStr.begin(), tempWStr.end());
					// std::cout << "freeing key: " << std::string(tempWStr.begin(), tempWStr.end()) << std::endl;
					free(tempStruct[j].key);
					if (tempStruct[j].type == TYPE_STRING)
					{
						free(tempStruct[j].str);
					}
					if (tempStruct[j].type == TYPE_DOUBLE)
					{
						free(tempStruct[j].dataReal);
					}
					if (tempStruct[j].type == TYPE_COMPLEX)
					{
						free(tempStruct[j].dataReal);
						free(tempStruct[j].dataImg);
					}
				}
				free(ins[i].out_struct);
			}
			else
			{
				free(ins[i].out_data_real);
			}

			if (ins[i].is_out_cmplx == 1)
			{
				free(ins[i].out_data_img);
			}
		}
		// Free the mem allocated for in variables
		for (i = 0; i < nin; i++)
		{
			if (ins[i].type == TYPE_STRUCT)
			{
				FUNCSTRUCT *tempStruct = ins[i].in_struct;
				for (int j = 0; j < ins[i].n_in_struct_len; j++)
				{
					free(tempStruct[j].key);
					if (tempStruct[j].type == TYPE_STRING)
					{
						free(tempStruct[j].str);
					}
					if (tempStruct[j].type == TYPE_DOUBLE)
					{
						free(tempStruct[j].dataReal);
					}
					if (tempStruct[j].type == TYPE_COMPLEX)
					{
						free(tempStruct[j].dataReal);
						free(tempStruct[j].dataImg);
					}
				}
				free(ins[i].in_struct);
			}
			else
			{
				free(ins[i].in_data_real);
			}

			if (ins[i].is_in_cmplx == 1)
			{
				free(ins[i].in_data_img);
			}
		}
		return 0;
	}
}