summaryrefslogtreecommitdiff
path: root/sci_gateway/cpp/sci_octave.cpp
blob: 2e22b97afdba8b231aa7048dee363e6124c8b692 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
// Copyright (C) 2019 - IIT Bombay - FOSSEE
//
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution.  The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
// Author: Rupak Rokade
// Organization: FOSSEE, IIT Bombay
// Email: toolbox@scilab.in

#include <iostream>
#include <string>
#include "wchar.h"
#include <cstdlib>
#include <sstream>

extern "C"
{
#include<Scierror.h>
#include<sciprint.h>
#include<api_scilab.h>
#include "localization.h"
#include "fun.h"
#include <cstdio>
#include <math.h>
#include <stdio.h>
#include "os_string.h"
#include <stdlib.h>



static const char fname[] = "octave_fun";
int sci_octave_fun(scilabEnv env, int nin, scilabVar* in, int nopt, scilabOpt* opt, int nout, scilabVar* out)

{
//printf("nin: %d\n", nin);
	if (nin < 2)
    {
        Scierror(999, _("%s: Wrong number of input arguments. Atleast %d expected.\n"), fname, 2);
        return STATUS_ERROR;
    }

	FUNCCALL funcall;
	FUNCCALL *funptr = &funcall;
	funcall.n_in_arguments = nin;
	funcall.n_out_user = nout;

	FUNCARGS ins[funcall.n_in_arguments*nout];
	FUNCARGS *argptr = ins;

	int i,j;
	double* d;
	double* rd = NULL;;
	double* cd = NULL;;
	int size;
	char str[20];
	char* c;
	double* n = NULL;
	int row = 0;
  int col = 0;
	double* in_real;
	double* in_img;

	for(i=0;i<nin;i++)
	{
		if(scilab_getType(env, in[i])==1)
		{	
			ins[i].type = TYPE_DOUBLE;
			if(scilab_isComplex(env, in[i])==1)
			{
				//printf("input %d is complex \n", i);
				ins[i].is_in_cmplx=1;
				size = scilab_getDim2d(env, in[i], &row, &col);
				ins[i].n_in_rows = row;
				ins[i].n_in_cols = col;
				scilab_getDoubleComplexArray(env, in[i],&in_real, &in_img);

				ins[i].in_data_real = malloc(sizeof(double)*size);
				ins[i].in_data_img = malloc(sizeof(double)*size);
				rd = (double *)ins[i].in_data_real;
				cd = (double *)ins[i].in_data_img;

	////This code snippet is to flatten matrix row wise and then store it
				int p,q,k = 0;
				for(p=0;p<row;p++)
				{
					for(q=0;q<col;q++)
					{
						rd[k] = in_real[p + q*row];
						cd[k] = in_img[p + q*row];
						k++;
						//printf("%d\n",in_real[k]);
						//printf("%d\n",in_img[k]);
					}
				}
			}
			else
			{
				//printf("input %d is NOT complex \n", i);
				ins[i].is_in_cmplx=0;
				size = scilab_getDim2d(env, in[i], &row, &col);
				ins[i].n_in_rows = row;
				ins[i].n_in_cols = col;
				scilab_getDoubleArray(env, in[i], &n);

				ins[i].in_data_real = malloc(sizeof(double)*size);
				d = (double *)ins[i].in_data_real;

	////This code snippet is to flatten matrix row wise and then store it
				int p,q,k = 0;
				for(p=0;p<row;p++)
				{
					for(q=0;q<col;q++)
					{
						d[k] = n[p + q*row];
						k++;
						//printf("%f\n",d[j]);
					}
				}
			}
/////////////////////////////////////////
		}
		else if(scilab_getType(env, in[i])==10)
		{
			ins[i].is_in_cmplx=0;
			wchar_t* in1 = 0;

			scilab_getString(env, in[i], &in1);
			//printf("%S\n", in1);

			wcstombs(str, in1, sizeof(str));
			//printf("%s\n", str);
			if(str)
			{
				//printf("lenght of string input: %d\n", strlen(str));
				ins[i].type = TYPE_STRING;
				ins[i].n_in_rows = 1;
				ins[i].n_in_cols = strlen(str);
				size = (ins[i].n_in_rows)*(ins[i].n_in_cols);
				ins[i].in_data_real = malloc(sizeof(char)*size+1);
				c = (char *)ins[i].in_data_real;
				int ci;

				strcpy(c,str);	
				ins[i].n_in_cols = strlen(c);
				//printf("in scilab strin is: %s\n", c);

			}
		}
		else
		    {
        Scierror(999, _("%s: Wrong type of input argument %d.\n"), fname, i);
        return STATUS_ERROR;
    }
	}
                         
                        // Capturing Errors and warnings
                        std::stringstream buffer_err;

                        // set our error buffer
                        std::cerr.rdbuf(buffer_err.rdbuf());

			int status_fun = fun(argptr, funptr);

                        // grab error buffer contents
                        std::string err = buffer_err.str(); 
                        if(!err.empty())
                        sciprint("%s", err.c_str());
                        buffer_err.str("");


		//printf("in scilab status_fun is: %d\n", status_fun);
			//printf("in scilab funcall.n_out_arguments is: %d\n", funcall.n_out_arguments);
			//printf("in scilab funcall.n_out_user is: %d\n", funcall.n_out_user);
//printf("in scilab ins[0].n_out_rows is: %d\n", ins[0].n_out_rows);
//printf("in scilab ins[0].n_out_cols is: %d\n", ins[0].n_out_cols);


//printf("in scilab ouput args are: %d\n", funcall.n_out_arguments);
	if(status_fun==1)
	{
		Scierror(999, "");
		return 1;
	}
	else if(funcall.n_out_user <= funcall.n_out_arguments)
	{	
		for(i=0;i<nout;i++)
		{	
			
		if(ins[i].is_out_cmplx==1)
		{
			//printf("output %d is complex\n", i);
			out[i] = scilab_createDoubleMatrix2d(env, ins[i].n_out_rows, ins[i].n_out_cols, 1);
			double* out_real = NULL;
			double* out_img = NULL;
			scilab_getDoubleComplexArray(env, out[i],&out_real, &out_img);
			int len = ins[i].n_out_rows*ins[i].n_out_cols;
			double* ord = (double *)ins[i].out_data_real;
			double* ocd = (double *)ins[i].out_data_img;
			//printf("output length is: %d\n", len);
			for(j=0; j<len; j++)
				{
					out_real[j] = ord[j];
				}

			for(j=0; j<len; j++)
				{
					out_img[j] = ocd[j];
				}
		}
		else
		{
			//printf("output %d is NOT complex\n", i);
			out[i] = scilab_createDoubleMatrix2d(env, ins[i].n_out_rows, ins[i].n_out_cols, 0);
			double* out1 = NULL;
		 	scilab_getDoubleArray(env, out[i], &out1);
			int len = ins[i].n_out_rows*ins[i].n_out_cols;
			double* dd = (double *)ins[i].out_data_real;
			//printf("output length is: %d\n", len);
			for(j=0; j<len; j++)
				{
					out1[j] = dd[j];//.float_value();
				}
			}
		}
	}
	else
	{
			Scierror(77, _("%s: Wrong number of output arguments: This function can return a maximum of %d output(s).\n"), fname, funcall.n_out_arguments);
			return 1;
		}




	for(i=0;i<nout;i++)
	{
		free(ins[i].out_data_real);

		if(ins[i].is_out_cmplx==1)
			free(ins[i].out_data_img);
	}

	for(i=0;i<nin;i++)
	{
		free(ins[i].in_data_real);

		if(ins[i].is_in_cmplx==1)
			free(ins[i].in_data_img);
	}
  return 0;
}
}