1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
|
// Copyright (C) 2019 - IIT Bombay - FOSSEE
//
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution. The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
// Author: Rupak Rokade
// Organization: FOSSEE, IIT Bombay
// Email: toolbox@scilab.in
#include <iostream>
#include <string>
#include "wchar.h"
#include <cstdlib>
#include <sstream>
extern "C"
{
#include <Scierror.h>
#include <sciprint.h>
#include <api_scilab.h>
#include "localization.h"
#include "fun.h"
#include <cstdio>
#include <math.h>
#include <stdio.h>
#include "os_string.h"
#include <stdlib.h>
static const char fname[] = "octave_fun";
/*! \brief Function to connect to Scilab's API.
*
* This function will get Data from Scilab, proccess the data
* in Octave then return the output back to Scilab using the
* API.
*/
int sci_octave_fun(scilabEnv env, int nin, scilabVar *in, int nopt, scilabOpt *opt, int nout, scilabVar *out)
{
//printf("nin: %d\n", nin);
if (nin < 1)
{
Scierror(999, _("%s: Wrong number of input arguments. Atleast %d expected.\n"), fname, 2);
return STATUS_ERROR;
}
FUNCCALL funcall;
FUNCCALL *funptr = &funcall;
funcall.n_in_arguments = nin;
funcall.n_out_user = nout;
FUNCARGS ins[funcall.n_in_arguments * nout];
FUNCARGS *argptr = ins;
int i, j;
double *d;
double *rd = NULL;
double *cd = NULL;
int size;
char str[20];
char *c;
double *n = NULL;
int row = 0;
int col = 0;
double *in_real;
double *in_img;
for (i = 0; i < nin; i++)
{
if (scilab_getType(env, in[i]) == 1)
{
ins[i].type = TYPE_DOUBLE;
if (scilab_isComplex(env, in[i]) == 1)
{
//printf("input %d is complex \n", i);
ins[i].is_in_cmplx = 1;
size = scilab_getDim2d(env, in[i], &row, &col);
ins[i].n_in_rows = row;
ins[i].n_in_cols = col;
scilab_getDoubleComplexArray(env, in[i], &in_real, &in_img);
ins[i].in_data_real = malloc(sizeof(double) * size);
ins[i].in_data_img = malloc(sizeof(double) * size);
rd = (double *)ins[i].in_data_real;
cd = (double *)ins[i].in_data_img;
////This code snippet is to flatten matrix row wise and then store it
int p, q, k = 0;
for (p = 0; p < row; p++)
{
for (q = 0; q < col; q++)
{
rd[k] = in_real[p + q * row];
cd[k] = in_img[p + q * row];
k++;
//printf("%d\n",in_real[k]);
//printf("%d\n",in_img[k]);
}
}
}
else
{
//printf("input %d is NOT complex \n", i);
ins[i].is_in_cmplx = 0;
size = scilab_getDim2d(env, in[i], &row, &col);
ins[i].n_in_rows = row;
ins[i].n_in_cols = col;
scilab_getDoubleArray(env, in[i], &n);
ins[i].in_data_real = malloc(sizeof(double) * size);
d = (double *)ins[i].in_data_real;
////This code snippet is to flatten matrix row wise and then store it
int p, q, k = 0;
for (p = 0; p < row; p++)
{
for (q = 0; q < col; q++)
{
d[k] = n[p + q * row];
k++;
//printf("%f\n",d[j]);
}
}
}
/////////////////////////////////////////
}
else if (scilab_getType(env, in[i]) == 10)
{
ins[i].is_in_cmplx = 0;
wchar_t *in1 = 0;
scilab_getString(env, in[i], &in1);
//printf("%S\n", in1);
wcstombs(str, in1, sizeof(str));
//printf("%s\n", str);
if (str)
{
//printf("lenght of string input: %d\n", strlen(str));
ins[i].type = TYPE_STRING;
ins[i].n_in_rows = 1;
ins[i].n_in_cols = strlen(str);
size = (ins[i].n_in_rows) * (ins[i].n_in_cols);
ins[i].in_data_real = malloc(sizeof(char) * (size + 1));
c = (char *)ins[i].in_data_real;
int ci;
strcpy(c, str);
ins[i].n_in_cols = strlen(c);
//printf("in scilab strin is: %s\n", c);
}
}
else if (scilab_getType(env, in[i]) == 18) //Checking for Struct input
{
ins[i].type = TYPE_STRUCT;
wchar_t** keys = NULL;
scilabVar struct_out;
int dims = 0;
dims = scilab_getFields(env, in[i], &keys); // Retrieving Struct Keys
ins[i].n_in_struct_len = dims;
//std::cout<<dims<<std::endl;
// allocating memory for keys and values
ins[i].in_struct = (FUNCSTRUCT*) malloc(sizeof(FUNCSTRUCT) * dims);
FUNCSTRUCT* inStruct = ins[i].in_struct;
for (j = 0; j < dims; j++)
{
// storing the key
inStruct[j].key = malloc(sizeof(keys[j]) + 1);
wcpcpy((wchar_t*) inStruct[j].key, keys[j]);
struct_out = scilab_getStructMatrix2dData(env, in[i], keys[j], 0, 0); // Retrieving Curr Value
// Checking Type of value in struct
if (scilab_getType(env,struct_out) == 1)
{
// Double Value
if (scilab_isComplex(env,struct_out) == 1)
{
// Complex Value
//printf("input %d is complex \n", i)
inStruct[j].type = TYPE_COMPLEX;
size = scilab_getDim2d(env, struct_out, &row, &col);
inStruct[j].rows = row;
inStruct[j].cols = col;
scilab_getDoubleComplexArray(env, struct_out, &in_real, &in_img);
inStruct[j].dataReal = malloc(sizeof(double) * size);
inStruct[j].dataImg = malloc(sizeof(double) * size);
rd = (double *) inStruct[j].dataReal;
cd = (double *) inStruct[j].dataImg;
////This code snippet is to flatten matrix row wise and then store it
int p, q, k = 0;
for (p = 0; p < row; p++)
{
for (q = 0; q < col; q++)
{
// printf("%d\n",in_real[p + q * row]);
// printf("%d\n",in_img[p + q * row]);
rd[k] = in_real[p + q * row];
cd[k] = in_img[p + q * row];
k++;
}
}
}
else
{
// Real Values Only
inStruct[j].type = TYPE_DOUBLE;
//printf("input %d is NOT complex \n", i);
size = scilab_getDim2d(env, struct_out, &row, &col);
scilab_getDoubleArray(env, struct_out, &n);
inStruct[j].rows = row;
inStruct[j].cols = col;
inStruct[j].dataReal = malloc(sizeof(double) * size);
d = (double *) inStruct[j].dataReal;
////This code snippet is to flatten matrix row wise and then store it
int p, q, k = 0;
for (p = 0; p < row; p++)
{
for (q = 0; q < col; q++)
{
// printf("%f\n",n[k]);
d[k] = n[k];
k++;
}
}
}
}
else if (scilab_getType(env,struct_out) == 10)
{
inStruct[j].type = TYPE_STRING;
wchar_t *in1 = NULL;
scilab_getString(env, struct_out, &in1);
//printf("%S\n", in1);
inStruct[j].str = malloc(sizeof(wchar_t) * (wcslen(in1) + 1));
wcpcpy((wchar_t*) inStruct[j].str, in1);
// printf("%s\n", str);
}
else
{
Scierror(999, _("%s: Wrong type of input argument %d.\n"), fname, i);
return STATUS_ERROR;
}
}
}
else
{
Scierror(999, _("%s: Wrong type of input argument %d.\n"), fname, i);
return STATUS_ERROR;
}
}
// Capturing Errors and warnings
std::stringstream buffer_err;
// set our error buffer
std::cerr.rdbuf(buffer_err.rdbuf());
// call the fun() function
int status_fun = fun(argptr, funptr);
// grab error buffer contents
std::string err = buffer_err.str();
if (!err.empty() && status_fun == 0)
sciprint("Warning from Octave\n%s", err.c_str());
buffer_err.str("");
//printf("in scilab status_fun is: %d\n", status_fun);
//printf("in scilab funcall.n_out_arguments is: %d\n", funcall.n_out_arguments);
//printf("in scilab funcall.n_out_user is: %d\n", funcall.n_out_user);
//printf("in scilab ins[0].n_out_rows is: %d\n", ins[0].n_out_rows);
//printf("in scilab ins[0].n_out_cols is: %d\n", ins[0].n_out_cols);
//printf("in scilab ouput args are: %d\n", funcall.n_out_arguments);
if (status_fun == 1)
{
Scierror(999, "Error from Octave\n%s", err.c_str());
return 1;
}
else if (funcall.n_out_user <= funcall.n_out_arguments)
{
for (i = 0; i < nout; i++)
{
if (ins[i].is_out_cmplx == 1)
{
//printf("output %d is complex\n", i);
out[i] = scilab_createDoubleMatrix2d(env, ins[i].n_out_rows, ins[i].n_out_cols, 1);
double *out_real = NULL;
double *out_img = NULL;
scilab_getDoubleComplexArray(env, out[i], &out_real, &out_img);
int len = ins[i].n_out_rows * ins[i].n_out_cols;
double *ord = (double *)ins[i].out_data_real;
double *ocd = (double *)ins[i].out_data_img;
//printf("output length is: %d\n", len);
for (j = 0; j < len; j++)
{
out_real[j] = ord[j];
}
for (j = 0; j < len; j++)
{
out_img[j] = ocd[j];
}
}
else if (ins[i].is_out_struct == 1){
// creating scilab struct
out[i] = scilab_createStruct(env);
int structLen = ins[i].n_out_struct_len;
FUNCSTRUCT* outStruct = ins[i].out_struct;
for (int j = 0; j < structLen; j++){
// std::printf("currKey in sciOctave.cpp OP: %ls\n", outStruct[j].key);
scilab_addField(env, out[i], (const wchar_t*) outStruct[j].key);
scilabVar currValue = NULL;
if (outStruct[j].type == TYPE_COMPLEX){
currValue = scilab_createDoubleMatrix2d(env, outStruct[j].rows, outStruct[j].cols, 1);
double *outReal = NULL;
double *outImg = NULL;
scilab_getDoubleComplexArray(env, currValue, &outReal, &outImg);
double* dReal = (double *) outStruct[j].dataReal;
double* dImg = (double *) outStruct[j].dataImg;
int size = outStruct[j].rows * outStruct[j].cols;
for(int k = 0; k < size; k++){
outReal[k] = dReal[k];
}
for(int k = 0; k < size; k++){
outImg[k] = dImg[k];
}
// set the key-value pair in scilab struct
scilab_setStructMatrix2dData(env, out[i], (const wchar_t*) outStruct[j].key, 0, 0, currValue);
}
else if (outStruct[j].type == TYPE_DOUBLE){
currValue = scilab_createDoubleMatrix2d(env, outStruct[j].rows, outStruct[j].cols, 1);
double *outReal = NULL;
scilab_getDoubleArray(env, currValue, &outReal);
double* dReal = (double *) outStruct[j].dataReal;
int size = outStruct[j].rows * outStruct[j].cols;
for(int k = 0; k < size; k++){
outReal[k] = dReal[k];
}
// set the key-value pair in scilab struct
scilab_setStructMatrix2dData(env, out[i], (const wchar_t*) outStruct[j].key, 0, 0, currValue);
}
else if (outStruct[j].type == TYPE_STRING){
scilab_setStructMatrix2dData(env, out[i], (const wchar_t*) outStruct[j].key, 0, 0, scilab_createString(env, (const wchar_t*) outStruct[j].str));
}
}
}
else
{
//printf("output %d is NOT complex\n", i);
out[i] = scilab_createDoubleMatrix2d(env, ins[i].n_out_rows, ins[i].n_out_cols, 0);
double *out1 = NULL;
scilab_getDoubleArray(env, out[i], &out1);
int len = ins[i].n_out_rows * ins[i].n_out_cols;
double *dd = (double *)ins[i].out_data_real;
//printf("output length is: %d\n", len);
for (j = 0; j < len; j++)
{
out1[j] = dd[j]; //.float_value();
}
}
}
}
else
{
Scierror(77, _("%s: Wrong number of output arguments: This function can return a maximum of %d output(s).\n"), fname, funcall.n_out_arguments);
return 1;
}
for (i = 0; i < nout; i++)
{
if (ins[i].is_out_struct == 1){
FUNCSTRUCT* tempStruct = ins[i].out_struct;
for (int j = 0; j < ins[i].n_out_struct_len; j++){
// std::wstring tempWStr((wchar_t *) tempStruct[j].key);
// std::string(tempWStr.begin(), tempWStr.end());
// std::cout << "freeing key: " << std::string(tempWStr.begin(), tempWStr.end()) << std::endl;
free(tempStruct[j].key);
if (tempStruct[j].type == TYPE_STRING){
free(tempStruct[j].str);
}
if (tempStruct[j].type == TYPE_DOUBLE){
free(tempStruct[j].dataReal);
}
if (tempStruct[j].type == TYPE_COMPLEX){
free(tempStruct[j].dataReal);
free(tempStruct[j].dataImg);
}
}
free(ins[i].out_struct);
}
else{
free(ins[i].out_data_real);
}
if (ins[i].is_out_cmplx == 1){
free(ins[i].out_data_img);
}
}
for (i = 0; i < nin; i++)
{
if(ins[i].type == TYPE_STRUCT){
FUNCSTRUCT* tempStruct = ins[i].in_struct;
for (int j = 0; j < ins[i].n_in_struct_len; j++){
free(tempStruct[j].key);
if (tempStruct[j].type == TYPE_STRING){
free(tempStruct[j].str);
}
if (tempStruct[j].type == TYPE_DOUBLE){
free(tempStruct[j].dataReal);
}
if (tempStruct[j].type == TYPE_COMPLEX){
free(tempStruct[j].dataReal);
free(tempStruct[j].dataImg);
}
}
free(ins[i].in_struct);
}
else{
free(ins[i].in_data_real);
}
if (ins[i].is_in_cmplx == 1){
free(ins[i].in_data_img);
}
}
return 0;
}
}
|