1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
|
MOSdriver -- 24inch 2 lossy lines LTRA model -- C load
m1 0 268 299 0 mn0p9 w = 18.0u l=1.0u
m2 299 267 748 0 mn0p9 w = 18.0u l=1.0u
m3 0 168 648 0 mn0p9 w = 18.0u l=0.9u
m4 1 268 748 1 mp1p0 w = 36.0u l=1.0u
m5 1 267 748 1 mp1p0 w = 36.0u l=1.0u
m6 1 168 648 1 mp1p0 w = 36.0u l=1.0u
*
CN648 648 0 0.025398e-12
CN651 651 0 0.007398e-12
CN748 748 0 0.025398e-12
CN751 751 0 0.009398e-12
CN299 299 0 0.005398e-12
*
* Subcircuit test
* test is a subcircuit that models a 2-conductor transmission line with
* the following parameters: l=9.13e-09, c=2.75e-13, r=0.2, g=0,
* inductive_coeff_of_coupling k=0.36144, inter-line capacitance cm=9e-14,
* length=24. Derived parameters are: lm=3.29995e-09, ctot=3.65e-13.
*
* It is important to note that the model is a simplified one - the
* following assumptions are made: 1. The self-inductance l, the
* self-capacitance ctot (note: not c), the series resistance r and the
* parallel capacitance g are the same for all lines, and 2. Each line
* is coupled only to the two lines adjacent to it, with the same
* coupling parameters cm and lm. The first assumption implies that edge
* effects have to be neglected. The utility of these assumptions is
* that they make the sL+R and sC+G matrices symmetric, tridiagonal and
* Toeplitz, with useful consequences (see "Efficient Transient
* Simulation of Lossy Interconnect", by J.S. Roychowdhury and
* D.O Pederson, Proc. DAC 91).
* It may be noted that a symmetric two-conductor line is
* represented accurately by this model.
* Subckt node convention:
*
* |--------------------------|
* 1-----| |-----n+1
* 2-----| |-----n+2
* : | n-wire multiconductor | :
* : | line | :
* n-1-----|(node 0=common gnd plane) |-----2n-1
* n-----| |-----2n
* |--------------------------|
* Lossy line models
.model mod1_test ltra rel=1.2 nocontrol r=0.2 l=5.83005279316e-09 g=0 c=4.55000000187e-13 len=24
.model mod2_test ltra rel=1.2 nocontrol r=0.2 l=1.24299471863e-08 g=0 c=2.75000000373e-13 len=24
* subcircuit m_test - modal transformation network for test
.subckt m_test 1 2 3 4
v1 5 0 0v
v2 6 0 0v
f1 0 3 v1 0.707106779721
f2 0 3 v2 -0.707106782652
f3 0 4 v1 0.707106781919
f4 0 4 v2 0.707106780454
e1 7 5 3 0 0.707106780454
e2 1 7 4 0 0.707106782652
e3 8 6 3 0 -0.707106781919
e4 2 8 4 0 0.707106779721
.ends m_test
* Subckt test
.subckt test 1 2 3 4
x1 1 2 5 6 m_test
o1 5 0 7 0 mod1_test
o2 6 0 8 0 mod2_test
x2 3 4 7 8 m_test
.ends test
*
x1 648 748 651 751 test
*
*
vdd 1 0 DC 5.0
VK 267 0 DC 5.0
*
VS1 168 0 PULSE (0 5 15.9N 0.2N 0.2N 15.8N 60N)
VS2 268 0 PULSE (0 5 15.9N 0.2N 0.2N 15.8N 60N)
*
.control
TRAN 0.2N 47.9NS
PLOT v(648) v(651) v(751)
.endc
*
.model mn0p9 nmos LEVEL=1 vto=0.8V kp=48u gamma=0.3 phi=0.55 lambda=0.0
+ PHI=0.55 LAMBDA=0.00 CGSO=0 CGDO=0 CGBO=0
+ CJ=0 CJSW=0 TOX=18000N NSUB=1E16 LD=0.0U
.model mp1p0 pmos LEVEL=1 vto=-0.8V kp=21u gamma=0.45 phi=0.61 lambda=0.0
+ PHI=0.61 LAMBDA=0.00 CGSO=0 CGDO=0 CGBO=0
+ CJ=0 CJSW=0 TOX=18000N NSUB=3E16 LD=0.0U
.END
|