blob: ee88c32966d3baf64e27189c1b1ac3c60c5d3a0b (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
|
*ng_script
* Example script for Monte Carlo with commercial HSPICE-compatible libraries
* The circuit in mc_ring_circ.net is a 25-stage inverter ring oscillator.
* Add your library to mc_ring_circ.net and choose transistors accordingly.
* Add the source file and the library path.
* A simple BSIM3 inverter R.O. serves as an MC example wtihout need for a library.
.control
begin
let mc_runs = 30 $ number of runs for monte carlo
let run = 0 $ number of actual run
set curplot = new $ create a new plot
set curplottitle = "Transient outputs"
set plot_out = $curplot $ store its name to 'plot_out'
set curplot = new $ create a new plot
set curplottitle = "FFT outputs"
set plot_fft = $curplot $ store its name to 'plot_fft'
set curplot = new $ create a new plot
set curplottitle = "Oscillation frequency"
set max_fft = $curplot $ store its name to 'max_fft'
let mc_runsp = mc_runs + 1
let maxffts = unitvec(mc_runsp) $ vector for storing max measure results
let halfffts = unitvec(mc_runsp)$ vector for storing measure results at -40dB rising
unlet mc_runsp
set mc_runs = $&mc_runs $ create a variable from the vector
let seeds = mc_runs + 2
setseed $&seeds
unlet seeds
echo source the input file
* Path of your circuit file and library file here
* Will be added to the already existing sourcepath
setcs sourcepath = ( $inputdir $sourcepath ./ngspice/examples/Monte_Carlo )
* source with file name of your circuit file
source mc_ring_circ.net
save buf $ we just need buf, save memory by more than 10x
* Output path (directory has already to be there)
* set outputpath = 'D:\Spice_general\ngspice\examples\Monte_Carlo\out'
* If your current directory is the 'ngspice' directory
* set outputpath = './examples/Monte_Carlo/out' $ LINUX alternative
* run the simulation loop
* We have to figure out what to do if a single simulation will not converge.
* There is now the variable sim_status, that is 0 if simulation ended regularly,
* and 1 if the simulation has been aborted with error message '...simulation(s) aborted'.
* Then we skip the rest of the run and continue with a new run.
dowhile run <= mc_runs
set run = $&run $ create a variable from the vector
* run=0 simulates with nominal parameters
if run > 0
echo
echo * * * * * *
echo Source the circuit again internally for run no. $run
echo * * * * * *
setseed $run
mc_source $ re-source the input file
else
echo run no. $run
end
echo simulation run no. $run of $mc_runs
tran 100p 1000n 0
echo Simulation status $sim_status
let simstat = $sim_status
if simstat = 1
if run = mc_runs
echo go to end
else
echo go to next run
end
destroy $curplot
goto next
end
* select stop and step so that number of data points after linearization is not too
* close to 8192, which would yield varying number of line length and thus scale for fft.
*
set dt0 = $curplot
* save the linearized data for having equal time scales for all runs
linearize buf $ linearize only buf, no other vectors needed
set dt1 = $curplot $ store the current plot to dt (tran i+1)
setplot $plot_out $ make 'plt_out' the active plot
* firstly save the time scale once to become the default scale
if run=0
let time={$dt1}.time
end
let vout{$run}={$dt1}.buf $ store the output vector to plot 'plot_out'
setplot $dt1 $ go back to the previous plot (tran i+1)
fft buf $ run fft on vector buf
let buf2=db(mag(buf))
* find the frequency where buf has its maximum of the fft signal
meas sp fft_max MAX_AT buf2 from=0.05G to=0.7G
* find the frequency where buf is -40dB at rising fft signal
meas sp fft_40 WHEN buf2=-40 RISE=1 from=0.05G to=0.7G
* store the fft vector
set dt2 = $curplot $ store the current plot to dt (spec i)
setplot $plot_fft $ make 'plot_fft' the active plot
if run=0
let frequency={$dt2}.frequency
end
let fft{$run}={$dt2}.buf $ store the output vector to plot 'plot_fft'
settype decibel fft{$run}
* store the measured value
setplot $max_fft $ make 'max_fft' the active plot
let maxffts[{$run}]={$dt2}.fft_max
let halfffts[{$run}]={$dt2}.fft_40
destroy $dt0 $dt1 $dt2 $ save memory, we don't need this plot (spec) any more
label next
remcirc
let run = run + 1
end
***** plotting **********************************************************
if $?batchmode
echo
echo Plotting not available in batch mode
echo Write linearized vout0 to vout{$mc_runs} to rawfile $rawfile
echo
write $rawfile {$plot_out}.allv
rusage
quit
else
if $?sharedmode or $?win_console
gnuplot xnp_pl1 {$plot_out}.vout0 $ just plot the tran output with nominal parameters
else
plot {$plot_out}.vout0 $ just plot the tran output with nominal parameters
end
setplot $plot_fft
if $?sharedmode or $?win_console
gnuplot xnp_pl2 db(mag(ally)) xlimit 0 1G ylimit -80 10
else
plot db(mag(ally)) xlimit 0 1G ylimit -80 10
end
*
* create a histogram from vector maxffts
setplot $max_fft $ make 'max_fft' the active plot
set startfreq=50MEG
set bin_size=1MEG
set bin_count=100
compose osc_frequ start=$startfreq step=$bin_size lin=$bin_count $ requires variables as parameters
settype frequency osc_frequ
let bin_count=$bin_count $ create a vector from the variable
let yvec=unitvec(bin_count) $ requires vector as parameter
let startfreq=$startfreq
let bin_size=$bin_size
* put data into the correct bins
let run = 0
dowhile run < mc_runs
set run = $&run $ create a variable from the vector
let val = maxffts[{$run}]
let part = 0
* Check if val fits into a bin. If yes, raise bin by 1
dowhile part < bin_count
if ((val < (startfreq + (part+1)*bin_size)) & (val >= (startfreq + part*bin_size)))
let yvec[part] = yvec[part] + 1
break
end
let part = part + 1
end
let run = run + 1
end
* plot the histogram
let count = yvec - 1 $ subtract 1 because we started with unitvec containing ones
if $?sharedmode or $?win_console
gnuplot np_pl3 count vs osc_frequ combplot
else
plot count vs osc_frequ combplot
end
* calculate jitter
let diff40 = (vecmax(halfffts) - vecmin(halfffts))*1e-6
echo
echo Max. jitter is "$&diff40" MHz
end
rusage
* quit
end
|