summaryrefslogtreecommitdiff
path: root/Windows/spice/examples/memristor/memristor_x.sp
diff options
context:
space:
mode:
Diffstat (limited to 'Windows/spice/examples/memristor/memristor_x.sp')
-rw-r--r--Windows/spice/examples/memristor/memristor_x.sp83
1 files changed, 0 insertions, 83 deletions
diff --git a/Windows/spice/examples/memristor/memristor_x.sp b/Windows/spice/examples/memristor/memristor_x.sp
deleted file mode 100644
index 1c283e73..00000000
--- a/Windows/spice/examples/memristor/memristor_x.sp
+++ /dev/null
@@ -1,83 +0,0 @@
-Memristor with threshold as XSPICE code model
-* Y. V. Pershin, M. Di Ventra: "SPICE model of memristive devices with threshold",
-* arXiv:1204.2600v1 [physics.comp-ph] 12 Apr 2012,
-* http://arxiv.org/pdf/1204.2600.pdf
-
-* XSPICE code model, parameter selection and plotting by
-* Holger Vogt 2012
-
-* ac and op (dc) simulation just use start resistance rinit!
-
-.param stime=10n
-.param vmax = 4.2
-
-* send parameters to the .control section
-.csparam stime={stime}
-.csparam vmax={vmax}
-
-*Xmem 1 0 memristor
-* triangular sweep (you have to adapt the parameters to 'alter' command in the .control section)
-*V1 1 0 DC 0 PWL(0 0 '0.25*stime' 'vmax' '0.5*stime' 0 '0.75*stime' '-vmax' 'stime' 0)
-* sinusoidal sweep for transient, dc for op, ac
-V1 0 1 DC 0.1 ac 1 sin(0 'vmax' '1/stime')
-
-Rl 1 11 1k
-
-* memristor model with limits and threshold
-* "artificial" parameters alpha, beta, and vt. beta and vt adapted to basic programming frequency
-* just to obtain nice results!
-* You have to care for the physics and set real values!
-amen 11 2 memr
-.model memr memristor (rmin=1k rmax=10k rinit=7k alpha=0 beta='20e3/stime' vt=1.6)
-
-vgnd 2 0 dc 0
-
-* This is the original subcircuit model
-.subckt memristor plus minus PARAMS: Ron=1K Roff=10K Rinit=7.0K alpha=0 beta=20e3/stime Vt=1.6
-Bx 0 x I='((f1(V(plus)-V(minus))> 0) && (V(x) < Roff)) ? {f1(V(plus)-V(minus))}: ((((f1(V(plus)-V(minus)) < 0) && (V(x)>Ron)) ? {f1(V(plus)-V(minus))}: 0)) '
-Vx x x1 dc 0
-Cx x1 0 1 IC={Rinit}
-Rmem plus minus r={V(x)}
-.func f1(y)={beta*y+0.5*(alpha-beta)*(abs(y+Vt)-abs(y-Vt))}
-.ends
-
-* transient simulation same programming voltage but rising frequencies
-.control
-*** first simulation ***
-op
-print all
-ac lin 101 1 100k
-plot v(11)
-* approx. 100 simulation points
-let deltime = stime/100
-tran $&deltime $&stime uic
-* plot i(v1) vs v(1)
-*** you may just stop here ***
-* raise the frequency
-let newfreq = 1.2/stime
-let newstime = stime/1.2
-let deltime = newstime/100
-alter @V1[sin] [ 0 $&vmax $&newfreq ]
-tran $&deltime $&newstime uic
-* raise the frequency even more
-let newfreq = 1.4/stime
-let newstime = stime/1.4
-let deltime = newstime/100
-alter @V1[sin] [ 0 $&vmax $&newfreq ]
-tran $&deltime $&newstime uic
-* the resistor currents
-plot tran1.alli tran2.alli alli title 'Memristor with threshold: currents'
-* calculate resistance (avoid dividing by zero)
-let res = v(1)/(I(v1) + 1e-16)
-let res1 = tran1.v(1)/(tran1.I(v1) + 1e-16)
-let res2 = tran2.v(1)/(tran2.I(v1) + 1e-16)
-* resistance versus time plot
-settype impedance res res1 res2
-plot res vs time res1 vs tran1.time res2 vs tran2.time title 'Memristor with threshold: resistance'
-* resistance versus voltage (change occurs only above threshold!)
-plot res vs v(1) res1 vs tran1.v(1) res2 vs tran2.v(1) title 'Memristor with threshold: resistance'
-* current through resistor for all plots versus voltage
-plot i(v1) vs v(1) tran1.i(v1) vs tran1.v(1) tran2.i(v1) vs tran2.v(1) title 'Memristor with threshold: external current loops'
-.endc
-
-.end