summaryrefslogtreecommitdiff
path: root/Windows/spice/examples/digital/74HCng_short_2.lib
diff options
context:
space:
mode:
Diffstat (limited to 'Windows/spice/examples/digital/74HCng_short_2.lib')
-rw-r--r--Windows/spice/examples/digital/74HCng_short_2.lib226
1 files changed, 0 insertions, 226 deletions
diff --git a/Windows/spice/examples/digital/74HCng_short_2.lib b/Windows/spice/examples/digital/74HCng_short_2.lib
deleted file mode 100644
index 62adda0a..00000000
--- a/Windows/spice/examples/digital/74HCng_short_2.lib
+++ /dev/null
@@ -1,226 +0,0 @@
-* 74hcng.lib
-*
-* derived from 74HCxxx Model libraray for LTSPICE from www.linear.com/software
-*
-* Revision 1.01 06/25/2018 test devices NAND, NOR, and XOR as XSPICE subcircuit for ngspice
-*
-* All parts have been divided into three sections.
-*
-* >--| A-D-Converter (threshold VCC1/2) |----| Event LOGIC Axx (delay) |----| OUTPUT LEVEL D-A (rise and fall times) |-->
-*
-* Delays are given for Vcc = 2V/4.5V/6V (HC) from the
-* Philips data sheets. http://www.philipslogic.com
-*
-* Delays are given for Vcc = 2V/4.5V/6V .
-* Used delay: Td = (Tpd-Tr/2)*(4.5-0.5)/(Vcc-0.5)
-* The gate delay has to be set to tpd minus 3ns for the input filter
-* and another minus 3ns for Trise/2
-* td1 = tpd - 3ns - 3ns
-*
-
-.param vcc=5 tripdt=6n
-***********************************************************************************
-* The 74HCXX gates
-*
-* 2-input NAND gate
-* vcc 2 /4.5/5 /6
-* tpd 25n/9n/7n/7n
-* tr 19n/7n / /6n
-.SUBCKT 74HC00 in1 in2 out NVCC NVGND vcc1={vcc} tripdt1={tripdt}
-.param td1={1e-9*(9-3-3)*4.0/(vcc1-0.5)}
-.param Rout={60*4.0/(vcc1-0.5)} $ standard output driver
-*Cin1 in1 0 3.5p
-*Cin2 in2 0 3.5p
-abridge2 [in1 in2] [din1 din2] adc_buff
-.model adc_buff adc_bridge(in_low = {vcc1/2.0} in_high = {vcc1/2.0})
-a6 [din1 din2] dout nand1
-.model nand1 d_nand(rise_delay = {td1} fall_delay = {td1}
-+ input_load = 0.5e-12)
-abridge1 [dout] [out20] dac1
-.model dac1 dac_bridge(out_low = 0.0 out_high = {vcc1} out_undef = {vcc1/2.0}
-+ input_load = 5.0e-12 t_rise = {tripdt1}
-+ t_fall = {tripdt1})
-Rout out20 out {Rout}
-.ends
-
-
-* 2-input NOR gate
-* tpd 25n/9n/7n
-* tr 19n/7n/6n
-.SUBCKT 74HC02 in1 in2 out NVCC NVGND vcc1={vcc} tripdt1={tripdt}
-.param td1={1e-9*(9-3-3)*4.0/(vcc1-0.5)}
-.param Rout={60*4.0/(vcc1-0.5)} $ standard output driver
-*Cin1 in1 0 3.5p
-*Cin2 in2 0 3.5p
-abridge2 [in1 in2] [din1 din2] adc_buff
-.model adc_buff adc_bridge(in_low = {vcc1/2.0} in_high = {vcc1/2.0})
-a6 [din1 din2] dout nor1
-.model nor1 d_nor(rise_delay = {td1} fall_delay = {td1} input_load = 0.5e-12)
-abridge1 [dout] [out20] dac1
-.model dac1 dac_bridge(out_low = 0.0 out_high = {vcc1} out_undef = {vcc1/2.0}
-+ input_load = 5.0e-12 t_rise = {tripdt1} t_fall = {tripdt1})
-Rout out20 out {Rout}
-.ends
-
-
-** 2-input AND gate
-* tpd 25n/9n/7n
-* tr 19n/7n/6n
-.SUBCKT 74HC08 in1 in2 out NVCC NVGND vcc1={vcc} tripdt1={tripdt}
-.param td1={1e-9*(9-3-3)*4.0/(vcc1-0.5)}
-.param Rout={60*4.0/(vcc1-0.5)} $ standard output driver
-*Cin1 in1 0 3.5p
-*Cin2 in2 0 3.5p
-abridge2 [in1 in2] [din1 din2] adc_buff
-.model adc_buff adc_bridge(in_low = {vcc1/2.0} in_high = {vcc1/2.0})
-a6 [din1 din2] dout and1
-.model and1 d_and(rise_delay = {td1} fall_delay = {td1}
-+ input_load = 0.5e-12)
-abridge1 [dout] [out20] dac1
-.model dac1 dac_bridge(out_low = 0.0 out_high = {vcc1} out_undef = {vcc1/2.0}
-+ input_load = 5.0e-12 t_rise = {tripdt1}
-+ t_fall = {tripdt1})
-Rout out20 out {Rout}
-.ends
-**
-
-* 2-input OR gate
-* tpd 25n/9n/7n
-* tr 19n/7n/6n
-.SUBCKT 74HC32 in1 in2 out NVCC NVGND vcc1={vcc} tripdt1={tripdt}
-.param td1={1e-9*(9-3-3)*4.0/(vcc1-0.5)}
-.param Rout={60*4.0/(vcc1-0.5)} $ standard output driver
-*Cin1 in1 0 3.5p
-*Cin2 in2 0 3.5p
-abridge2 [in1 in2] [din1 din2] adc_buff
-.model adc_buff adc_bridge(in_low = {vcc1/2.0} in_high = {vcc1/2.0})
-a6 [din1 din2] dout or1
-.model or1 d_or(rise_delay = {td1} fall_delay = {td1} input_load = 0.5e-12)
-abridge1 [dout] [out20] dac1
-.model dac1 dac_bridge(out_low = 0.0 out_high = {vcc1} out_undef = {vcc1/2.0}
-+ input_load = 5.0e-12 t_rise = {tripdt1} t_fall = {tripdt1})
-Rout out20 out {Rout}
-.ends
-
-
-* 2-input EXOR gate
-* tpd 39n/14n/11n
-* tr 19n/7n/6n
-.SUBCKT 74HC86 in1 in2 out NVCC NVGND vcc1={vcc} tripdt1={tripdt}
-.param td1={1e-9*(14-3-3)*4.0/(vcc1-0.5)}
-.param Rout={60*4.0/(vcc1-0.5)} $ standard output driver
-*Cin1 in1 0 3.5p
-*Cin2 in2 0 3.5p
-abridge2 [in1 in2] [din1 din2] adc_buff
-.model adc_buff adc_bridge(in_low = {vcc1/2.0} in_high = {vcc1/2.0})
-a6 [din1 din2] dout xor3
-.model xor3 d_xor(rise_delay = {td1} fall_delay = {td1}
-+ input_load = 0.5e-12)
-abridge1 [dout] [out20] dac1
-.model dac1 dac_bridge(out_low = 0.0 out_high = {vcc1} out_undef = {vcc1/2.0}
-+ input_load = 5.0e-12 t_rise = {tripdt1} t_fall = {tripdt1})
-Rout out20 out {Rout}
-.ends
-
-
-*
-*============================================================================
-*
-* A hopefully real transistor level based model of the 74HCU04. The model
-* comes directly from philips. http://www.philipslogic.com/support/spice/
-* This a unbuffered inverter which is often used in LC or crystal oscillators.
-* Inverter, unbuffered
-* Original Philips model used.
-.SUBCKT 74HCU04 A Y VCC VGND vcc1={vcc} speed1={speed} tripdt1={tripdt}
-*Rin A A1 200
-*Cin A1 VGND 3p
-*XAY A1 Y VCC VGND 74HC04_INV0
-XAY A Y VCC VGND 74HC04_INV0
-.ends
-*
-*
-.SUBCKT 74HC04_INV0 2 3 80 90
-*IN=2, OUT=3, VCC=80, GND=90
-XINP 20 25 50 60 74HC_INP0N
-XOUTP 25 30 50 60 74HC_OUTPN
-L1 80 50 6.87NH
-L2 60 90 6.87NH
-L3 2 20 5.97NH
-L4 30 3 5.97NH
-C1 50 90 1.5P
-C2 60 90 1.5P
-C3 20 90 1.5P
-C4 3 90 1.5P
-.ENDS
-*
-.SUBCKT 74HC_INP0N 2 3 50 60
-*IN=2, OUT=3, VCC=50, GND=60
-R1 2 3 100
-MP1 3 50 50 50 MHCPEN W=20U L=2.4U AD=100P AS=100P PD=40U PS= 20U
-MN1 3 60 60 60 MHCNEN W=35U L=2.4U AD=260P AS=260P PD=70U PS= 20U
-.ENDS
-*
-.SUBCKT 74HC_OUTPN 2 3 50 60
-*IN=2, OUT=3, VCC=50, GND=60
-R1 2 4 100
-MP1 3 4 50 50 MHCPEN W=360U L=2.4U AD=400P AS=400P PD=10U PS=180U
-MN1 3 4 60 60 MHCNEN W=140U L=2.4U AD=200P AS=300P PD=10U PS=130U
-R2 4 5 50
-MP2 3 5 50 50 MHCPEN W=360U L=2.4U AD=400P AS=400P PD=10U PS=180U
-MN2 3 5 60 60 MHCNEN W=140U L=2.4U AD=200P AS=200P PD=10U PS=130U
-R3 5 6 50
-MP3 3 6 50 50 MHCPEN W=360U L=2.4U AD=400P AS=400P PD=10U PS=180U
-MN3 3 6 60 60 MHCNEN W=140U L=2.4U AD=200P AS=200P PD=10U PS=130U
-.ENDS
-************************************************
-* NOMINAL N-Channel Transistor *
-* UCB-3 Parameter Set *
-* HIGH-SPEED CMOS Logic Family *
-* 10-Jan.-1995 *
-************************************************
-.Model MHCNEN NMOS (
-+LEVEL = 3
-+KP = 45.3E-6
-+VTO = 0.72
-+TOX = 51.5E-9
-+NSUB = 2.8E15
-+GAMMA = 0.94
-+PHI = 0.65
-+VMAX = 150E3
-+RS = 40
-+RD = 40
-+XJ = 0.11E-6
-+LD = 0.52E-6
-+DELTA = 0.315
-+THETA = 0.054
-+ETA = 0.025
-+KAPPA = 0.0
-+WD = 0.0 )
-
-***********************************************
-* NOMINAL P-Channel transistor *
-* UCB-3 Parameter Set *
-* HIGH-SPEED CMOS Logic Family *
-* 10-Jan.-1995 *
-***********************************************
-.Model MHCPEN PMOS (
-+LEVEL = 3
-+KP = 22.1E-6
-+VTO = -0.71
-+TOX = 51.5E-9
-+NSUB = 3.3E16
-+GAMMA = 0.92
-+PHI = 0.65
-+VMAX = 970E3
-+RS = 80
-+RD = 80
-+XJ = 0.63E-6
-+LD = 0.23E-6
-+DELTA = 2.24
-+THETA = 0.108
-+ETA = 0.322
-+KAPPA = 0.0
-+WD = 0.0 )
-
-
-