diff options
Diffstat (limited to 'Windows/spice/examples/digital/74HCng_short_2.lib')
-rw-r--r-- | Windows/spice/examples/digital/74HCng_short_2.lib | 226 |
1 files changed, 0 insertions, 226 deletions
diff --git a/Windows/spice/examples/digital/74HCng_short_2.lib b/Windows/spice/examples/digital/74HCng_short_2.lib deleted file mode 100644 index 62adda0a..00000000 --- a/Windows/spice/examples/digital/74HCng_short_2.lib +++ /dev/null @@ -1,226 +0,0 @@ -* 74hcng.lib -* -* derived from 74HCxxx Model libraray for LTSPICE from www.linear.com/software -* -* Revision 1.01 06/25/2018 test devices NAND, NOR, and XOR as XSPICE subcircuit for ngspice -* -* All parts have been divided into three sections. -* -* >--| A-D-Converter (threshold VCC1/2) |----| Event LOGIC Axx (delay) |----| OUTPUT LEVEL D-A (rise and fall times) |--> -* -* Delays are given for Vcc = 2V/4.5V/6V (HC) from the -* Philips data sheets. http://www.philipslogic.com -* -* Delays are given for Vcc = 2V/4.5V/6V . -* Used delay: Td = (Tpd-Tr/2)*(4.5-0.5)/(Vcc-0.5) -* The gate delay has to be set to tpd minus 3ns for the input filter -* and another minus 3ns for Trise/2 -* td1 = tpd - 3ns - 3ns -* - -.param vcc=5 tripdt=6n -*********************************************************************************** -* The 74HCXX gates -* -* 2-input NAND gate -* vcc 2 /4.5/5 /6 -* tpd 25n/9n/7n/7n -* tr 19n/7n / /6n -.SUBCKT 74HC00 in1 in2 out NVCC NVGND vcc1={vcc} tripdt1={tripdt} -.param td1={1e-9*(9-3-3)*4.0/(vcc1-0.5)} -.param Rout={60*4.0/(vcc1-0.5)} $ standard output driver -*Cin1 in1 0 3.5p -*Cin2 in2 0 3.5p -abridge2 [in1 in2] [din1 din2] adc_buff -.model adc_buff adc_bridge(in_low = {vcc1/2.0} in_high = {vcc1/2.0}) -a6 [din1 din2] dout nand1 -.model nand1 d_nand(rise_delay = {td1} fall_delay = {td1} -+ input_load = 0.5e-12) -abridge1 [dout] [out20] dac1 -.model dac1 dac_bridge(out_low = 0.0 out_high = {vcc1} out_undef = {vcc1/2.0} -+ input_load = 5.0e-12 t_rise = {tripdt1} -+ t_fall = {tripdt1}) -Rout out20 out {Rout} -.ends - - -* 2-input NOR gate -* tpd 25n/9n/7n -* tr 19n/7n/6n -.SUBCKT 74HC02 in1 in2 out NVCC NVGND vcc1={vcc} tripdt1={tripdt} -.param td1={1e-9*(9-3-3)*4.0/(vcc1-0.5)} -.param Rout={60*4.0/(vcc1-0.5)} $ standard output driver -*Cin1 in1 0 3.5p -*Cin2 in2 0 3.5p -abridge2 [in1 in2] [din1 din2] adc_buff -.model adc_buff adc_bridge(in_low = {vcc1/2.0} in_high = {vcc1/2.0}) -a6 [din1 din2] dout nor1 -.model nor1 d_nor(rise_delay = {td1} fall_delay = {td1} input_load = 0.5e-12) -abridge1 [dout] [out20] dac1 -.model dac1 dac_bridge(out_low = 0.0 out_high = {vcc1} out_undef = {vcc1/2.0} -+ input_load = 5.0e-12 t_rise = {tripdt1} t_fall = {tripdt1}) -Rout out20 out {Rout} -.ends - - -** 2-input AND gate -* tpd 25n/9n/7n -* tr 19n/7n/6n -.SUBCKT 74HC08 in1 in2 out NVCC NVGND vcc1={vcc} tripdt1={tripdt} -.param td1={1e-9*(9-3-3)*4.0/(vcc1-0.5)} -.param Rout={60*4.0/(vcc1-0.5)} $ standard output driver -*Cin1 in1 0 3.5p -*Cin2 in2 0 3.5p -abridge2 [in1 in2] [din1 din2] adc_buff -.model adc_buff adc_bridge(in_low = {vcc1/2.0} in_high = {vcc1/2.0}) -a6 [din1 din2] dout and1 -.model and1 d_and(rise_delay = {td1} fall_delay = {td1} -+ input_load = 0.5e-12) -abridge1 [dout] [out20] dac1 -.model dac1 dac_bridge(out_low = 0.0 out_high = {vcc1} out_undef = {vcc1/2.0} -+ input_load = 5.0e-12 t_rise = {tripdt1} -+ t_fall = {tripdt1}) -Rout out20 out {Rout} -.ends -** - -* 2-input OR gate -* tpd 25n/9n/7n -* tr 19n/7n/6n -.SUBCKT 74HC32 in1 in2 out NVCC NVGND vcc1={vcc} tripdt1={tripdt} -.param td1={1e-9*(9-3-3)*4.0/(vcc1-0.5)} -.param Rout={60*4.0/(vcc1-0.5)} $ standard output driver -*Cin1 in1 0 3.5p -*Cin2 in2 0 3.5p -abridge2 [in1 in2] [din1 din2] adc_buff -.model adc_buff adc_bridge(in_low = {vcc1/2.0} in_high = {vcc1/2.0}) -a6 [din1 din2] dout or1 -.model or1 d_or(rise_delay = {td1} fall_delay = {td1} input_load = 0.5e-12) -abridge1 [dout] [out20] dac1 -.model dac1 dac_bridge(out_low = 0.0 out_high = {vcc1} out_undef = {vcc1/2.0} -+ input_load = 5.0e-12 t_rise = {tripdt1} t_fall = {tripdt1}) -Rout out20 out {Rout} -.ends - - -* 2-input EXOR gate -* tpd 39n/14n/11n -* tr 19n/7n/6n -.SUBCKT 74HC86 in1 in2 out NVCC NVGND vcc1={vcc} tripdt1={tripdt} -.param td1={1e-9*(14-3-3)*4.0/(vcc1-0.5)} -.param Rout={60*4.0/(vcc1-0.5)} $ standard output driver -*Cin1 in1 0 3.5p -*Cin2 in2 0 3.5p -abridge2 [in1 in2] [din1 din2] adc_buff -.model adc_buff adc_bridge(in_low = {vcc1/2.0} in_high = {vcc1/2.0}) -a6 [din1 din2] dout xor3 -.model xor3 d_xor(rise_delay = {td1} fall_delay = {td1} -+ input_load = 0.5e-12) -abridge1 [dout] [out20] dac1 -.model dac1 dac_bridge(out_low = 0.0 out_high = {vcc1} out_undef = {vcc1/2.0} -+ input_load = 5.0e-12 t_rise = {tripdt1} t_fall = {tripdt1}) -Rout out20 out {Rout} -.ends - - -* -*============================================================================ -* -* A hopefully real transistor level based model of the 74HCU04. The model -* comes directly from philips. http://www.philipslogic.com/support/spice/ -* This a unbuffered inverter which is often used in LC or crystal oscillators. -* Inverter, unbuffered -* Original Philips model used. -.SUBCKT 74HCU04 A Y VCC VGND vcc1={vcc} speed1={speed} tripdt1={tripdt} -*Rin A A1 200 -*Cin A1 VGND 3p -*XAY A1 Y VCC VGND 74HC04_INV0 -XAY A Y VCC VGND 74HC04_INV0 -.ends -* -* -.SUBCKT 74HC04_INV0 2 3 80 90 -*IN=2, OUT=3, VCC=80, GND=90 -XINP 20 25 50 60 74HC_INP0N -XOUTP 25 30 50 60 74HC_OUTPN -L1 80 50 6.87NH -L2 60 90 6.87NH -L3 2 20 5.97NH -L4 30 3 5.97NH -C1 50 90 1.5P -C2 60 90 1.5P -C3 20 90 1.5P -C4 3 90 1.5P -.ENDS -* -.SUBCKT 74HC_INP0N 2 3 50 60 -*IN=2, OUT=3, VCC=50, GND=60 -R1 2 3 100 -MP1 3 50 50 50 MHCPEN W=20U L=2.4U AD=100P AS=100P PD=40U PS= 20U -MN1 3 60 60 60 MHCNEN W=35U L=2.4U AD=260P AS=260P PD=70U PS= 20U -.ENDS -* -.SUBCKT 74HC_OUTPN 2 3 50 60 -*IN=2, OUT=3, VCC=50, GND=60 -R1 2 4 100 -MP1 3 4 50 50 MHCPEN W=360U L=2.4U AD=400P AS=400P PD=10U PS=180U -MN1 3 4 60 60 MHCNEN W=140U L=2.4U AD=200P AS=300P PD=10U PS=130U -R2 4 5 50 -MP2 3 5 50 50 MHCPEN W=360U L=2.4U AD=400P AS=400P PD=10U PS=180U -MN2 3 5 60 60 MHCNEN W=140U L=2.4U AD=200P AS=200P PD=10U PS=130U -R3 5 6 50 -MP3 3 6 50 50 MHCPEN W=360U L=2.4U AD=400P AS=400P PD=10U PS=180U -MN3 3 6 60 60 MHCNEN W=140U L=2.4U AD=200P AS=200P PD=10U PS=130U -.ENDS -************************************************ -* NOMINAL N-Channel Transistor * -* UCB-3 Parameter Set * -* HIGH-SPEED CMOS Logic Family * -* 10-Jan.-1995 * -************************************************ -.Model MHCNEN NMOS ( -+LEVEL = 3 -+KP = 45.3E-6 -+VTO = 0.72 -+TOX = 51.5E-9 -+NSUB = 2.8E15 -+GAMMA = 0.94 -+PHI = 0.65 -+VMAX = 150E3 -+RS = 40 -+RD = 40 -+XJ = 0.11E-6 -+LD = 0.52E-6 -+DELTA = 0.315 -+THETA = 0.054 -+ETA = 0.025 -+KAPPA = 0.0 -+WD = 0.0 ) - -*********************************************** -* NOMINAL P-Channel transistor * -* UCB-3 Parameter Set * -* HIGH-SPEED CMOS Logic Family * -* 10-Jan.-1995 * -*********************************************** -.Model MHCPEN PMOS ( -+LEVEL = 3 -+KP = 22.1E-6 -+VTO = -0.71 -+TOX = 51.5E-9 -+NSUB = 3.3E16 -+GAMMA = 0.92 -+PHI = 0.65 -+VMAX = 970E3 -+RS = 80 -+RD = 80 -+XJ = 0.63E-6 -+LD = 0.23E-6 -+DELTA = 2.24 -+THETA = 0.108 -+ETA = 0.322 -+KAPPA = 0.0 -+WD = 0.0 ) - - - |