1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 8: Multiple Access Techniques"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 8.11: throughput_of_pure_ALOHA.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"TDR=1*10^6\n",
"G=0.5\n",
"SmaxALOHA=G*%e^(-2*G)*TDR// throughput\n",
"printf('\nmax. throughput of ALOHA with large no.of subscibers with transmission rate of 1Mbps is= %.f kbps',SmaxALOHA*10^(-3))\n",
"Stdma=100/100*TDR\n",
"printf('\nthroughput of a TDMA network with transmission rate of 1Mbps is= %.f Mbps',Stdma*10^(-6));\n",
"Saloha=TDR\n",
"printf('\nthroughput of ALOHA with 1 subsciber with transmission rate of 1Mbps= %.f Mbps',Saloha*10^(-6));"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 8.1: impact_of_aci_in_fdma.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"Y=2//prpogation path-loss exponent\n",
"r2=10^3\n",
"r1=10\n",
"delPr=20*log10(r2/r1)^2//log(r2/r1)*20dB/decade\n",
"disp(delPr,'difference between the recieved signal strength (in dB)')\n",
"imp=delPr+20//impact\n",
"disp(imp,'effect of shadow fading causes difference between the recieved signal strength to exceed to (in dB)')\n",
"outrad=40//out of bound radiations\n",
"disp(imp-outrad,'IMPACT is out-of-bound radiations exceeds the desired signal strength by (in dB)')"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 8.3: number_of_channels_in_AMPS.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"Bt=12.5*10^6\n",
"Bg=10^3\n",
"Bc=30*10^3\n",
"N=(Bt-2*Bg)/Bc//no. of channels\n",
"disp(N,'no. of channels available in an FDMA system is' )"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 8.4: number_of_channel_links.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"TS=5*10^6//total spectrum\n",
"CBW=25000//bandwidth (channel)\n",
"ns=TS/CBW\n",
"nspd=2\n",
"nd=ns/nspd//Number of simultaneous calls\n",
"disp(nd,'Number of simultaneous calls')"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 8.5: number_of_simultaneous_users.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"Bt=25*10^6//allocated spectrum\n",
"Bc=200*10^3//channel bandwidth\n",
"Bg=0//no guard band\n",
"m=8//no. of speech channels\n",
"N=m*(Bt-2*Bg)/Bc\n",
"disp(N,'no. of simultaneous subscribers a GSM system can accommodate is ' )"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 8.7: frame_efficiency_of_GSM.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"N=156.25//total bits\n",
"nov=40.25//overhead bits\n",
"FReff=(1-nov/N)*100//frame efficiency\n",
"disp(FReff,'the frame efficiency (in %)')"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Scilab",
"language": "scilab",
"name": "scilab"
},
"language_info": {
"file_extension": ".sce",
"help_links": [
{
"text": "MetaKernel Magics",
"url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
}
],
"mimetype": "text/x-octave",
"name": "scilab",
"version": "0.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|