1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 4: Steam Turbine Plants"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.1: Calculations_on_Steam_Turbine_Plant.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// scilab Code Exa 4.1 Calculations on Steam Turbine Plant \n",
"\n",
"p1=25; // Turbine Inlet Pressure in bar\n",
"p2=0.065; // Condenser Pressure in bar\n",
"n_B=0.82; // Boiler efficiency\n",
"delp=p1-p2;\n",
"v_w=0.001; // Specific Volume at condenser Pressure in m3/kg\n",
"\n",
"h1=160.6; // from steam tables at p1=0.065 bar\n",
"h2=h1+(delp*100*v_w);\n",
"\n",
"//part(a) Determining exact and approximate Rankine efficiency of the plant\n",
"h3=2800; // from steam table vapour enthalpy at 25 bar\n",
"h4=1930; // from steam table\n",
"n_rankine_ex=(h3-h4-(h2-h1))/(h3-h1-(h2-h1));\n",
"disp ('%',n_rankine_ex*100,'(a)(i) Exact Rankine efficiency is')\n",
"\n",
"n_rankine_app=(h3-h4)/(h3-h1);\n",
"disp ('%',n_rankine_app*100,' (a)(ii)Approximate Rankine efficiency is')\n",
"\n",
"//part(b) Determining thermal and relative efficiencies of the plant\n",
"n_t=0.78; // Turbine Efficiency\n",
"CV=26.3*10e2; // Calorific Value of fuel in kJ/kg;\n",
"n_th=(n_t*(h3-h4))/(h3-h1);\n",
"disp('%',n_th*100,'(b)(i)thermal efficiency of the plant is')\n",
"n_rel=n_th/n_rankine_app;\n",
"disp('%',n_rel*100,'(ii)relative efficiency of the plant is')\n",
"\n",
"//part(c) Determining Overall efficiency of the plant\n",
"n_o=n_th*n_B;\n",
"disp('%',n_o*100,'(c)overall efficiency of the plant is')\n",
"\n",
"//part(d) Turbine and Overall heat rates\n",
"hr_t=3600/n_th; \n",
"disp('kJ/kWh',hr_t,'(d)(i)Turbine Heat Rate is')\n",
"hr_o=3600/n_o; \n",
"disp('kJ/kWh',hr_o,'(d)(ii)overall Heat Rate is')\n",
"\n",
"//part(e) Steam Consumption per kWh\n",
"m_s=3600/(n_t*(h3-h4));\n",
"disp('kg/kWh' ,m_s,'(e)Steam Consumption is')\n",
"\n",
"//part(f) Fuel Consumption per kWh\n",
"m_f=3600/(CV*n_o);\n",
"disp('kg/kWh' ,m_f,'(f)Fuel Consumption is')"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.2: Steam_Turbine_Plant_for_different_reheat_cycles.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"\n",
"// scilab Code Exa 4.2 Steam Turbine Plant for different reheat cycles\n",
"\n",
"p1=160; // Turbine Inlet Pressure in bar\n",
"T1=500; // Turbine Entry Temperature in Degree Celsius\n",
"p2=0.06; // Condenser Pressure in bar\n",
"\n",
"// from steam tables at p1=0.06 bar, \n",
"h1=147; // Specific Enthalpy of water in kJ/kg\n",
"h2=2567; // Specific Enthalpy of steam in kJ/kg\n",
"\n",
"h3=3295; // from steam table\n",
"h4=1947; // from steam table\n",
"q_n=h3-h1;\n",
"n_N=(h3-h4)/(q_n);\n",
"x=(h4-h1)/(h2-h1);\n",
"disp('%',n_N*100,'for non reheat cycle plant efficiency is')\n",
"disp ('kJ/kWh',3600/n_N,'Turbine Heat Rate is')\n",
"disp(x,'final dryness fraction is')\n",
"// for reheat cycle\n",
"\n",
"p(1)=70;\n",
"h5(1)=3412; // in kJ/kg\n",
"h7(1)=3065; // in kJ/kg\n",
"h6(1)=2094; // in kJ/kg\n",
"p(2)=50;\n",
"h5(2)=3433; // in kJ/kg\n",
"h7(2)=2981; // in kJ/kg\n",
"h6(2)=2144; // in kJ/kg\n",
"p(3)=25;\n",
"h5(3)=3475; // in kJ/kg\n",
"h7(3)=2826; // in kJ/kg\n",
"h6(3)=2249; // in kJ/kg\n",
"for i=1:3\n",
" q_r(i)=h5(i)-h7(i);\n",
"a(i)=(h6(i)-h4)/(q_r(i));\n",
"n_r(i)=1-a(i); // exact Rankine efficiency\n",
"b(i)=q_r(i)*n_r(i)/n_N;\n",
"n_th(i)=(q_n+b(i))*n_N/(q_n+q_r(i));\n",
"hr_t(i)=3600/n_th(i);\n",
"x(i)=(h6(i)-h1)/(h2-h1);\n",
"disp('bar',p(i),'for reheat pressure' )\n",
"disp('kJ',q_r(i),'q_R=')\n",
"disp('kJ',h6(i)-h4,'H6-H4= ')\n",
"disp('%',n_r(i)*100,'Rankine efficiency of the plant is')\n",
"disp('%',n_th(i)*100,'thermal efficiency of the plant is')\n",
"disp('kJ/kWh',hr_t(i),'Heat Rate is')\n",
"disp(x(i),'final dryness fraction is')\n",
" \n",
"end\n",
"\n",
"disp('Comment: Error in Textbook, Answers vary due to Round-off Errors')"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.3: Calculations_on_Steam_Turbine_Plant.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// scilab Code Exa 4.3 Calculations on Steam Turbine Plant \n",
"\n",
"p1=82.75; // Turbine Inlet Pressure in bar\n",
"T1=510; // Turbine Entry Temperature in Degree Celsius\n",
"pc=0.042; // Condenser Pressure in bar\n",
"H=3420;\n",
"n_e=0.85;\n",
"gamma=1.4;\n",
"n_st1=0.85;\n",
"\n",
"p2=22.75;\n",
"// for regenerative cycle\n",
"hs(1)=121.4; // from steam tables and mollier chart\n",
"p(6)=p2; // pressure at bleed point 1\n",
"Hs(6)=3080; // Enthalpy of steam at bleed point 1\n",
"h1s=931;\n",
"hs(6)=h1s; // Enthalpy of water at bleed point 1\n",
"H_22=H-(n_st1*(H-h1s));\n",
"\n",
"p(5)=10.65; // pressure at bleed point 2\n",
"Hs(5)=2950; // Enthalpy of steam at bleed point 2\n",
"hs(5)=772; // Enthalpy of water at bleed point 2\n",
"\n",
"p(4)=4.35; // pressure at bleed point 3\n",
"Hs(4)=2730; // Enthalpy of steam at bleed point 3\n",
"hs(4)=612; // Enthalpy of water at bleed point 3\n",
"\n",
"p(3)=1.25; // pressure at bleed point 4\n",
"Hs(3)=2590; // Enthalpy of steam at bleed point 4\n",
"hs(3)=444; // Enthalpy of water at bleed point 4\n",
"\n",
"p(2)=0.6; // pressure at bleed point 5\n",
"Hs(2)=2510; // Enthalpy of steam at bleed point 5\n",
"hs(2)=360; // Enthalpy of water at bleed point 5\n",
"\n",
"m=1;\n",
"h_c=121.4;\n",
"x=0.875;\n",
"disp(x,'(a)the final state at point C is')\n",
"for i=2:6\n",
"alpha(i)=(Hs(i)-hs(i-1))/(Hs(i)-hs(i));\n",
"m=m*alpha(i); \n",
"end\n",
"disp('kg',m,'(b)The mass of steam raised per kg of steam reaching the condenser is')\n",
"// part(c) thermal efficiency with feed heating\n",
"H_c=2250;\n",
"h_n=hs(6);\n",
"n_th=1-((H_c-h_c)/(m*(H-h_n)));\n",
"hr_t=3600/n_th;\n",
"//(c) the improvement in thermal efficiency and heat rate\n",
"c=H-H_c;\n",
"d=H-h_c;\n",
"n_R=(H-H_c)/(H-h_c);\n",
"hr_R=3600/n_R;\n",
"deln_th=(n_th-n_R)/n_R;\n",
"disp ('%',deln_th*100,'(c)therefore, the improvement in efficiency is')\n",
"delhr_t=(hr_R-hr_t)/hr_R;\n",
"disp ('%',delhr_t*100,' and, the improvement in heat rate is')\n",
"\n",
"// part(d) decrease of steam flow to the condenser per kWh due to feed heating\n",
"q_s=m*(H-h_n);\n",
"q_r=H_c-h_c;\n",
"w_t=q_s-q_r;\n",
"wt_m=w_t/m;\n",
"sf_r=3600/wt_m;\n",
"s_c=sf_r/m;\n",
"// without feed heating\n",
"wt_f=H-H_c;\n",
"m_wf=3600/wt_f;\n",
"sr_c=(m_wf-s_c)/m_wf;\n",
"disp ('%',sr_c*100,'(d)the decrease in steam reaching the condenser is')\n",
"disp('comment: the calculation for the improvement in efficiency is wrong in the book.')\n",
" "
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Scilab",
"language": "scilab",
"name": "scilab"
},
"language_info": {
"file_extension": ".sce",
"help_links": [
{
"text": "MetaKernel Magics",
"url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
}
],
"mimetype": "text/x-octave",
"name": "scilab",
"version": "0.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|