1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 15: Centrifugal Fans and Blowers"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 15.1: Centrifugal_fan_stage_1450_rpm.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// scilab Code Exa 15.1 Centrifugal fan stage 1450 rpm\n",
"\n",
"d1=0.18; // inner diameter of the impeller in m\n",
"d2=0.2; // outer diameter of the impeller in m\n",
"N=1450; // rotor Speed in RPM\n",
"c1=21; // Absolute velocity at entry in m/s\n",
"w1=20; // relative velocity at entry in m/s\n",
"c2=25; // Absolute velocity at exit in m/s\n",
"w2=17; // relative velocity at exit in m/s\n",
"m=0.5; // flow rate in kg/s\n",
"n_m=0.78; // overall Efficiency of the motor\n",
"ro=1.25; // density of air in kg/m3\n",
"\n",
"u1=%pi*d1*N/60;\n",
"u2=%pi*d2*N/60;\n",
"delp_r=0.5*ro*((w1^2)-(w2^2))+(0.5*ro*((u2^2)-(u1^2)));\n",
"delp0_st=0.5*ro*(((w1^2)-(w2^2))+((u2^2)-(u1^2))+((c2^2)-(c1^2)));\n",
"disp('mm W.G.',delp0_st/9.81,'(a)stage pressure rise is')\n",
"DOR=delp_r/delp0_st;\n",
"disp(DOR,'(b)the degree of reaction is') \n",
"w_st=delp0_st/ro;\n",
"P=m*w_st/n_m;\n",
"disp('W',P,'(c)the motor Power required to drive the fan is')"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 15.2: Centrifugal_blower_3000_rpm.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// scilab Code Exa 15.2 Centrifugal blower 3000 rpm\n",
"\n",
"beta2=90; // rotor blade air angle at inlet in degree\n",
"N=3e3; // rotor Speed in RPM\n",
"T1=310; // in Kelvin\n",
"p1=0.98; //Initial Pressure in bar\n",
"R=287;\n",
"n_d=0.88; // Efficiency of the drive\n",
"n_f=0.82; // Efficiency of the fan\n",
"Q=200/60; // discharge in m3/s\n",
"h=1000; // mm column of water\n",
"delp0=h*9.81;\n",
"Pi=Q*delp0/1000; // ideal power\n",
"P=Pi/(n_d*n_f);\n",
"disp('kW',P,'(a)Power required by the electric motor is')\n",
"\n",
"// part(b) impeller diameter\n",
"ro=(p1*1e5)/(R*T1);\n",
"u2=sqrt(delp0/(ro*n_f));\n",
"d2=u2*60/(%pi*N);\n",
"disp('cm',d2*1e2,'(b)the impeller diameter is')\n",
"\n",
"// part(c) inner diameter of the blade ring\n",
"c_r2=0.2*u2;\n",
"c_i=0.4*u2;\n",
"d1=sqrt(Q*4/(%pi*c_i));\n",
"disp('cm',d1*1e2,'(c)the inner diameter of the blade ring is')\n",
"\n",
"// part(d) air angle at the entry\n",
"u1=u2*d1/d2;\n",
"beta1=atand(c_r2/u1);\n",
"disp('degree',beta1,'(d)the air angle at the entry beta1=')\n",
"\n",
"// part(e) impeller widths at entry and exit\n",
"b1=Q/(c_r2*%pi*d1);\n",
"disp('cm',b1*1e2,'(e)the impeller width at entry is')\n",
"b2=b1*d1/d2;\n",
"disp('cm',b2*1e2,'and the impeller width at exit is')\n",
"\n",
"// part(f) number of impeller blades\n",
"z=8.5*sind(beta2)/(1-(d1/d2));\n",
"disp(z,'(f)the number of impeller blades is')\n",
"\n",
"// part(g) the specific speed\n",
"gH=u2^2;\n",
"omega=2*%pi*N/60;\n",
"NS=omega*sqrt(Q)/(gH^(3/4));\n",
"disp(NS,'(g)the dimensionless specific speed is')"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Scilab",
"language": "scilab",
"name": "scilab"
},
"language_info": {
"file_extension": ".sce",
"help_links": [
{
"text": "MetaKernel Magics",
"url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
}
],
"mimetype": "text/x-octave",
"name": "scilab",
"version": "0.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|