1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 4: WORK AND HEAT"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.10: ECONOMISER_SURFACE_AREA.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;\n",
"Tc1=10; // Feed water inlet temperature in degree celcius\n",
"Tc2=77; // Feed water outlet temperature in degree celcius\n",
"th1=166; // Initial temperature of flue gas in degree celcius\n",
"r=4; // Ratio of mass flow rates of flue gases and water\n",
"Ch=1.05; // The specific heat of flue gas in kJ/kg K\n",
"Cc=4.187; // The specific heat of feed water in kJ/kg K\n",
"U=114; // Overall heat transfer coefficient in W/m^2\n",
"mc=1; // massflowrate of feed water in kg/s\n",
"th2=th1-((Cc*(Tc2-Tc1))/(r*Ch)); // Outlet temperature of flue gas in degree celcius\n",
"Q=mc/3600*Cc*(Tc2-Tc1); // Heat transfer rate per kg/h of water flow\n",
"// Parallel flow \n",
"del_Tm=((th1-Tc1)-(th2-Tc2))/log ((th1-Tc1)/(th2-Tc2)); // Logarthamic Mean Temperature Difference in degree celcius\n",
"A=Q*10^3/(U*del_Tm); // Economiser surface area\n",
"disp ('degree celcius',del_Tm,'Logarthamic Mean Temperature Difference=',' (a)Parallel flow');\n",
"disp ('m^2',A,'Economiser surface area =');\n",
"// Counter flow\n",
"del_Tm=((th1-Tc2)-(th2-Tc1))/log ((th1-Tc2)/(th2-Tc1)); // Logarthamic Mean Temperature Difference in degree celcius\n",
"A=Q*10^3/(U*del_Tm); // Economiser surface area\n",
"disp ('degree celcius',del_Tm,'Logarthamic Mean Temperature Difference=',' (b) Counter flow');\n",
"disp ('m^2',A,'Economiser surface area =');"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.1: CALCULATION_OF_WORKDONE_DURING_POLYTROPIC_PROCESS.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;\n",
"p1=5; // Pressure of Helium gas at initial state in bar\n",
"T1=222; // Temperature of Helium gas at initial state in K\n",
"V1=0.055; // Volume of Helium gas at initial state in m^3\n",
"n=1.5; // Index of expansion process\n",
"R=2.078;// Characteristic gas constant of Helium gas in kJ/kg K\n",
"p2=2; // Pressure of Helium gas at final state (after expansion) in bar\n",
"disp ('Method I');\n",
"V2=V1*(p1/p2)^(1/n);// From Polytropic process relation for final volume\n",
"W=((p2*10^2*V2)-(p1*10^2*V1))/(n-1); // Work done from Polytropic process relation\n",
"disp ('kJ',W,'Work done =');\n",
"disp ('Method II');\n",
"m=(p1*10^2*V1)/(R*T1); // ideal gas equation\n",
"T2=T1*(p2/p1)^((n-1)/n); // From Polytropic process relation of final temperature\n",
"W=(m*R*(T1-T2))/(1-n); // Work done from Polytropic process relation\n",
"disp ('kJ',W,'Work done =');"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.3: CALCULATION_OF_WORKDONE.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;\n",
"p1=1.3; // Initial pressure of gas in bar\n",
"V1=0.03; // Initial volume of gas in m^3\n",
"V2=0.1; // Final volume of gas in m^3\n",
"disp ('(a).Constant pressure process');\n",
"W=p1*10^2*(V2-V1); // work done by gas\n",
"disp('kJ',W,'work done by gas =');\n",
"disp ('(b).Constant Temperature process');\n",
"W=p1*10^2*V1*log(V2/V1);// Work done by gas\n",
"disp('kJ',W,'work done by gas =');\n",
"disp ('(c).polytropic process of index 1.3');\n",
"n=1.3; //index of polytropic process \n",
"p2=p1*(V1/V2)^n; // From Polytropic process relation for final pressure\n",
"W=((p2*10^2*V2)-(p1*10^2*V1))/(1-n); // Work done by gas\n",
"disp('kJ',W,'work done by gas =');"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.4: FREE_EXPANSION_OF_FREON_12.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;\n",
"patm=1; // Atmospheric pressure in bar\n",
"V1=0.0135; // Volume of Freon 12 at initial state in m^3\n",
"D=9; // Diameter of the cylinder in cm\n",
"m=90; // Mass of the piston in kg\n",
"g=9.80665; // acceleration due to gravity in m/s^2\n",
"// (a). Determination of the final pressure and volume of the system\n",
"A=%pi/4 * (D*10^-2)^2; // Area of the cylinder\n",
"p1=0.7449; // Initial pressure of saturated vapour at 30 degree celcius in MPa\n",
"v1=0.023508; // Initial specific volume of saturated vapour at 30 degree celcius in m^3/kg\n",
"p2=(patm*10^5)+(m*g)/A; // Final pressure of Freon 12\n",
"v2=0.084022; // Final specific volume from superheated table at p2 and 30 degree celcius in m^3/kg\n",
"mf=V1/v1; // Mass of Freon 12\n",
"V2=mf*v2; // Final volume of Freon 12\n",
"disp ('Pa',p2,'Final pressure = ','(a)');\n",
"disp ('m^3 (round off error)',V2,'Final volume = ');\n",
"// (b). Calculation of workdone by Freon 12 during this process\n",
"Wirrev=p2*(V2-V1); // P dv Work done \n",
"disp ('kJ (round off error)',Wirrev/1000,'Work done = ','(b)');\n",
"// (c). Calculation of workdone by Freon 12 during reversible process\n",
"Wrev=p1*10^6*V1*log (V2/V1);//From reversible process relation for work done\n",
"disp ('kJ (round off error)',Wrev/1000,'Work done in reveersible process = ','(c)');"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.5: CALCULATION_OF_POWER_AND_CLEARENCE_VOLUMETRIC_EFFICIENCY.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;\n",
"p1=0.1; // Initial pressure (before compression) of air in MPa\n",
"T1=30; // Initial temperature (before compression) of air in degree celcius\n",
"p2=0.9; // Final pressure (after compression) of air in MPa\n",
"R=0.287; // Characteristic constant of air in kJ/kg k\n",
"// (i) Actual work in the flow process\n",
"// (a).Isothermal Process\n",
"w=-R*(T1+273)*log (p2/p1); // work done for isothermal process\n",
"disp ('kJ/kg',w,'work done = ','(a).Isothermal Process','(i) Actual work in the flow process');\n",
"// (b).Polytropic process\n",
"n=1.4; // Index of polytropic process\n",
"T2=(T1+273)*(p2/p1)^((n-1)/n); // From Polytropic process relation for final temperature\n",
"w=(n/(1-n))*R*(T2-(T1+273)); // work done for polytropic process\n",
"disp ('kJ/kg',w,'compression work = ','(b).Polytropic process');\n",
"// (ii).Nonflow work\n",
"// (a).Isothermal Process\n",
"w=-R*(T1+273)*log (p2/p1); // work done for isothermal process\n",
"disp ('kJ/kg',w,'work done = ','(a).Isothermal Process','(ii).Nonflow work');\n",
"// (b).Polytropic process\n",
"w=(1/(1-n))*R*(T2-(T1+273));// work done for polytropic process\n",
"disp ('kJ/kg',w,'compression work = ','(b).Polytropic process');"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.6: WORK_OF_COMPRESSION.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;\n",
"p1=1; // Initial pressure (before compression) of air in bar\n",
"p2=8; // Final pressure (after compression) of air in bar\n",
"Vp=15; // Displacement volume of reciprocating air compressor in litres\n",
"Vc=0.05*Vp; // Clearance volume of reciprocating air compressor in litres\n",
"N=600; // Speed of compressor in rpm\n",
"V1=Vc+Vp; // Total volume of reciprocating air compressor in litres\n",
"p3=p2; // constant pressure process\n",
"p4=p1; // constant pressure process\n",
"V3=Vc;// Clearance volume of reciprocating air compressor in litres\n",
"n=1.3; // Index of reversible adiabatic compression process\n",
"m=1.4; // Index of reversible adiabatic expansion process\n",
"V4=V3*(p3/p4)^(1/m);\n",
"// (a).Work per machine cycle\n",
"Wcycle = ((n/(n-1))*p1*10^2*V1*10^-3*(1-(p2/p1)^((n-1)/n)))-((m/(m-1))*p4*10^2*V4*10^-3*(1-(p3/p4)^((m-1)/m))); // Work per machine cycle\n",
"disp ('kJ',Wcycle,'Work per machine cycle (Error in textbook)','(a)');\n",
"Wpower=abs (Wcycle)*(N/60); // Power consumption of the compressor\n",
"disp ('kW',Wpower,'Power consumption of the compressor');\n",
"// (b).Work of the cycle if m=n\n",
"m=n;\n",
"W_cycle=(n/(n-1))*p1*10^2*(V1-V4)*10^-3*(1-(p2/p1)^((n-1)/n)); // Work per machine cycle\n",
"disp ('kJ',W_cycle,'Work per machine cycle','(b)');\n",
"er=((W_cycle-Wcycle)/Wcycle) * 100 // Error involved in calculating work if m=n\n",
"disp ('%',er,'Error (Error in textbook)= ');\n",
"// (c).Clearance volumetric efficiency\n",
"C=Vc/Vp;\n",
"eff = 1+C+-C*(p2/p1)^(1/n); // Clearance volumetric efficiency\n",
"disp ('%',eff*100,'Clearance volumetric efficiency = ','(c).Clearance volumetric efficiency');\n",
""
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.7: WORK_OF_STEAM_ENGINE.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;\n",
"D=150; // Cylinder Diameter in mm\n",
"L=200; // Piston stroke in mm\n",
"C=0.05; // Clearance factor\n",
"p1=15; // Steam inlet conditions (saturated) in bar\n",
"p4=1; // Exhaust or back pressure in bar\n",
"p2=p1; // Constant pressure process\n",
"p5=p4; // Constant pressure process\n",
"Vp=(%pi*(D*10^-3)^2*L*10^-3)/4; // Swept volme of cylinder\n",
"Vc=C*Vp; // Clearance volume of cylinder\n",
"V3=Vc+Vp; // Total volume of cylinder\n",
"V1=Vc; // Clearance volume\n",
"V6=V1; // constant volume process\n",
"V4=V3; // constant volume process\n",
"V5=Vc+0.3*Vp; // Compression begins at 30% of stroke\n",
"V2=Vc+0.4*Vp; // Cut-off occurs at 40% of stroke\n",
"p6=p5*(V5/V6); // Pressure after compression\n",
"Wcycle=(p1*10^2*(V2-V1))+(p2*10^2*V2*log (V3/V2))-(p4*10^2*(V4-V5))-(p5*10^2*V5* log(V5/V6)); // Work per Cycle\n",
"disp('kJ',Wcycle,'Work per cycle =');"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.8: INDICATOR_WORK.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;\n",
"D=10; //Bore in cm\n",
"L=12.5; //Stroke length in cm\n",
"a=9.68; // Area of indicator card in cm^2\n",
"l=5.33; // Card length in cm\n",
"Ks=21.7; // Indicator spring constant per meter of card length\n",
"A=(%pi*(D*10^-2)^2)/4; // Area of pisaton\n",
"Pm=(a/l)*10^-2*Ks*10^6; // Mean effective pressure\n",
"W=Pm*A*L*10^-2; // Work done by cycle\n",
"disp('kJ',W,'Work done by cycle = ');"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.9: DOUBLE_ACTING_STEAM_ENGINE.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;\n",
"D=152; // Bore of steam engine in mm\n",
"l=89; // Stroke length of steam engine in mm\n",
"a1=8;a2=10; // area of indicatior diagram on two sides\n",
"Ks=50; // Indicator spring constant in lbf/in^2/in\n",
"N=310; // Engine speed in rpm\n",
"d=0.664; // Diameter of flywheel in m\n",
"// (a)\n",
"a=(a1+a2)/2; // Average area of indicator diagram\n",
"Ks=50*4.44822/(0.0254)^3; // Unit conversion from lbf/in^2/in to N/m^2\n",
"pm=(a/(l/10))*10^-2*Ks; // Mean effective pressure \n",
"A=(%pi*(D*10^-3)^2)/4; // Area of the piston\n",
"IP=2*pm*l*10^-3*A*N/60; // Indicated power\n",
"disp ('kW',IP/1000,'Indicated power of Engine =','(a)');\n",
"// (b)\n",
"F=12-1.5; // Tangential force on the brake drum in kgf\n",
"BP=F*9.81*d/2*2*%pi*N/60; // Brake power of Engine\n",
"eff=BP/IP *100 ; // Mechanical efficiency \n",
"disp ('kW',BP/1000,'Brake power of Engine = ','(b)');\n",
"disp ('%',eff,'Mechanical efficiency of Engine =');"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Scilab",
"language": "scilab",
"name": "scilab"
},
"language_info": {
"file_extension": ".sce",
"help_links": [
{
"text": "MetaKernel Magics",
"url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
}
],
"mimetype": "text/x-octave",
"name": "scilab",
"version": "0.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|