1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 8: Brakes and dynamometer"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 8.1: Braking_trrques.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"\n",
"clc\n",
"//given\n",
"dia=12//in\n",
"r=dia/2\n",
"CQ=7//in\n",
"OC=6//in\n",
"OH=15//in\n",
"u=0.3\n",
"P=100//lb\n",
"phi=atan(u)\n",
"x=r*sin(phi)//in inches;radius of friction circle\n",
"a=5.82//from figure\n",
"Tb=P*OH*x/a//braking torque\n",
"printf('\nThe braking torque of the drum Tb= %.2f lb in\n',Tb)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 8.2: Braking_troque_applied_to_the_drum.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"\n",
"clc\n",
"//given\n",
"\n",
"OH=15//in\n",
"l=OH\n",
"u=0.3\n",
"P=100//lb\n",
"phi=atan(u)\n",
"//according to fig 170(b)\n",
"//for clockwise rotation\n",
"a=6//from figure\n",
"x=r*sin(phi)//in inches;radius of friction circle\n",
"Tb=P*l*x/a//braking torque on the drum\n",
"//for counter clockwise rotation\n",
"a1=5.5//in\n",
"Tb1=P*l*x/a1//braking torque on the drum\n",
"//according to figure 172(a)\n",
"//for clockwise rotation\n",
"a2=6.48//from figure\n",
"x=r*sin(phi)//in inches;radius of friction circle\n",
"Tb2=P*l*x/a2//braking torque on the drum\n",
"//for counter clockwise rotation\n",
"a3=6.38//in\n",
"Tb3=P*l*x/a3//braking torque on the drum\n",
"T1=ceil(Tb1)\n",
"T2=ceil(Tb2)\n",
"T3=ceil(Tb3)\n",
"printf('\nbraking torque on drum\nWhen dimensions are measured from fig 170(b)\nFor clockwise rotation= %.f lb in\nFor counter clockwise rotation= %.f lb in\nWhen dimensions are measured from fig 171(a)\nFor clockwise rotation= %.f lb in\nFor counter clockwise rotation= %.f lb in',Tb,T1,T2,T3)\n",
"\n",
"\n",
""
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 8.3: Magnitude_of_force.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"\n",
"clc\n",
"//given\n",
"u=.35\n",
"Tb=500//lb.ft\n",
"rd=10//in\n",
"phi=atan(u)\n",
"x=rd*sin(phi)\n",
"//F*OD=R*a=R1*a\n",
"//R=R1\n",
"//2*R*x=Tb\n",
"OD=24//in\n",
"a=11.5//inches; From figure\n",
"F=Tb*a*12/(OD*2*x)\n",
"//from figure\n",
"HG=4//in\n",
"GK=12//in\n",
"HL=12.22//in\n",
"P=F*HG/GK\n",
"Fhd=HL*P/HG\n",
"printf('\na) Magnitude of P = %.f lb',P)\n",
"printf('\nb) Magnitude of Fhd = %.f lb',Fhd)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 8.4: force_required_to_support_load.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"\n",
"clc\n",
"//given\n",
"u=.3\n",
"theta=270*%pi/180\n",
"l=18//in\n",
"a=4//in\n",
"Di=15//in\n",
"Do=21//in\n",
"w=.5//tons\n",
"W=w*2204//lb\n",
"Q=W*Di/Do//required tangential braking force on the drum\n",
"k=%e^(u*theta)//k=T1/T2\n",
"p=Q*a/(l*(k-1))\n",
"printf('Least force required, P = %.f lb',p)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 8.5: Effort_applied.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"\n",
"clc\n",
"//given\n",
"n=12\n",
"u=.28\n",
"a=4.5//in\n",
"b=1//in\n",
"l=21//in\n",
"r=15//in\n",
"Tb=4000//lb\n",
"theta=10*%pi/180\n",
"//k=Tn/To\n",
"k=((1+u*tan(theta))/(1-u*tan(theta)))^n\n",
"Q=Tb*(12/r)\n",
"P=Q*(a-b*k)/(l*(k-1))//from combining 8.6 with k=e^u*theta\n",
"printf('The least effort required = P = %.1f lb',P)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 8.6: minimum_distance.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc\n",
"//given\n",
"w=9.5 //ft\n",
"h= 2 //ft\n",
"x=4 //ft\n",
"v=30//mph\n",
"V=1.46667*v//ft/s\n",
"u1=.1\n",
"u2=.6\n",
"g=32.2//ft/s^2\n",
"//a) rear wheels braked\n",
"fa1=(u1*(w-x)*g)/(w+u1*h)\n",
"fa2=(u2*(w-x)*g)/(w+u2*h)\n",
"sa1=V^2/(2*fa1)\n",
"sa2=V^2/(2*fa2)\n",
"//b) front wheels braked\n",
"fb1=u1*x*g/(w-u1*h)\n",
"fb2=u2*x*g/(w-u2*h)\n",
"sb1=V^2/(2*fb1)\n",
"sb2=V^2/(2*fb2)\n",
"//c) All wheels braked\n",
"fc1=u1*g\n",
"fc2=u2*g\n",
"sc1=V^2/(2*fc1)\n",
"sc2=V^2/(2*fc2)\n",
"k1=(x+u1*h)/(w-x-u1*h)//Na/Nb\n",
"k2=(x+u2*h)/(w-x-u2*h)//Na/Nb\n",
"printf('\nCoefficient of friction = 0.1\na) Minimum distance in which car may be stopped when the rear brakes are applied = %.f ft\nb) Minimum distance in which car may be stopped when the front brakes are applied = %.f ft\nc) Minimum distance in which car may be stopped when all brakes are applied = %.f ft\nCoefficient of friction = 0.6\na) Minimum distance in which car may be stopped when the rear brakes are applied = %.f ft\nb) Minimum distance in which car may be stopped when the front brakes are applied = %.f ft\nc) Minimum distance in which car may be stopped when all brakes are applied = %.f ft\n',sa1,sb1,sc1,sa2,sb2,sc2)\n",
"printf('Required ration of Na/Nb\nFor u1 = 0.1 -> %.3f\nFor u2 = 0.6 -> %.2f\n',k1,k2)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Scilab",
"language": "scilab",
"name": "scilab"
},
"language_info": {
"file_extension": ".sce",
"help_links": [
{
"text": "MetaKernel Magics",
"url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
}
],
"mimetype": "text/x-octave",
"name": "scilab",
"version": "0.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|