1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 15: Vibrations"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 15.11: n_a_t_u_r_a_l_f_r_e_q_u_e_n_c_i_e_s.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//to find the natural frequencies of the torsional vibration of the system when inertia is neglected and when it is taken into account\n",
"clc\n",
"//given\n",
"g=32.3//ft/s^2\n",
"l2=25.5//in\n",
"d1=2.75//in\n",
"d2=3.5//in\n",
"C=12*10^6//modulus of rigidity\n",
"G=1/0.6//given speed ratio\n",
"Ib=54//lb in^2\n",
"Ic=850//lb in^2\n",
"Id=50000//lb in^2\n",
"Id1=Id/G^2//15.62\n",
"Ia=1500//lb in^2\n",
"la=Id1/(Id1+Ia)*66.5\n",
"J=%pi*d1^4/32\n",
"q=C*J/la//torsional stiffness\n",
"n=(1/(2*%pi))*(q*g*12/Ia)^(1/2)\n",
"nf=n*60//for minutes\n",
"//case b)\n",
"Ib1=Ib+Ic/(G^2)\n",
"a=63.15//in; distance of the node from rotor A (given)\n",
"b=3.661//in; distance of the node from rotor A (given)\n",
"N1=n*(la/a)^(1/2)\n",
"N2=n*(la/b)^(1/2)\n",
"N1f=N1*60//for minutes\n",
"N2f=N2*60//for minutes\n",
"printf('\na) The frequency of torsional vibrations n = %.1f per sec or %.f per min\nb) The fundamental frquency = %.1f per sec or %.f per min\n and the two node frequency = %.f per sec or %.f per min',n,nf,N1,N1f,N2,N2f)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 15.1: frequency.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//to find the frequencies of the free longitudinal, transverse and torsional vibrations\n",
"clc\n",
"//given\n",
"W=.3*2240//lb\n",
"l=36//in\n",
"D=3//in\n",
"k=15//in\n",
"A=%pi*(D/2)^2\n",
"E=30*10^6//youngs modulus\n",
"C=12*10^6\n",
"g=32.2//ft/s^2\n",
"d=W*l/(A*E)\n",
"Fl=187.8/(d)^(1/2)\n",
"I=%pi*(d/2)^4\n",
"d1=W*(l^3)*64/(3*E*%pi*(3^4))\n",
"Ft=187.8/(d1)^(1/2)\n",
"j=%pi*3^4/32\n",
"q=C*j/l\n",
"Ftor=(1/(2*%pi))*(q*g*12/(W*k^2))^(1/2)\n",
"F1=Ftor*60\n",
"printf('\na) Frequency of Longitudinal vibrations = %.f per min\nb) Frequency of the transverse vibrations = %.f per min\nc) Frequency of the torsional vibration = %.f per min',Fl,Ft,F1)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 15.2: Natural_frquency.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//To find the natural frequencies of the longitudinal, transverse and torsional vibration of the system\n",
"clc\n",
"//given\n",
"l1=3//ft\n",
"l2=2//ft\n",
"l=l1+l2//ft\n",
"W=.5*2240//lb\n",
"k=20//in\n",
"d=2//in\n",
"Wa=2*W/5\n",
"E=30*10^6\n",
"A=%pi*(d/2)^2\n",
"d1=Wa*l1*12/(A*E)\n",
"N1=187.8/(d1)^(1/2)\n",
"I=%pi*(d)^4/64\n",
"d2=W*(l1*12)^3*(l2*12)^3/(3*E*(l*12)^3*I)\n",
"N2=187.8/(d2)^(1/2)\n",
"C=12*10^6//given\n",
"g=32.2//given\n",
"J=%pi*d^4/32\n",
"q=C*J*((1/(l1*12))+(1/(l2*12)))\n",
"n=(1/(2*%pi))*(q*g*12/(W*k^2))^(1/2)\n",
"N3=n*60\n",
"printf('\na)Longitudinal vibration = %.f per min\nb)Transverse Vibration = %.f per min\nc)Torsional Vibration = %.f per min\n',N1,N2,N3)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 15.3: Natural_transverse_vibration.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//to find frequency of the natural transverse vibration\n",
"clc\n",
"//given\n",
"l=10//ft\n",
"d=4//in\n",
"E=30*10^6//youngs modulus\n",
"d1=0.0882//inches; maximum deflection as shown in the figure\n",
"N=207/(d1)^(1/2)//From 15.20\n",
"printf('\nFrequency of natural transverse vibration = %.f per min',N)\n",
""
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 15.4: Resistance_offered.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//To find the resistance offered by the dashpot\n",
"clc\n",
"//given\n",
"m=50//lb\n",
"k=100//lb/in\n",
"g=32.2//ft/s\n",
"d=m/k//static deflection\n",
"n=(1/(2*%pi))*(g*12/d)^(1/2)\n",
"//part 2\n",
"b=g*12/d\n",
"a=(b/20.79)^(1/2)\n",
"nd=(1/(2*%pi))*((b-(a/2)^2))^(1/2)\n",
"A=nd/n\n",
"printf('\nFrequency of free vibrations = %.3f per sec\nFrequency of damped vibrations = %.3f per sec \nThe ratio of the frequencies of damped and free vibrationsis %.3f \n',n,nd,A)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 15.5: Ratio.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//To find the ratio nd/n\n",
"clc\n",
"//given\n",
"//damping torque is directly proposrtional to the angular velocity\n",
"C=12*10^6//Modulus of rigidity\n",
"l=3//ft\n",
"d=1//in\n",
"g=32.2//ft/s^2\n",
"I=500//lb ft^2 ; moment of inertia\n",
"J=%pi*d^4/32\n",
"q=C*J/(l*12)\n",
"n=(1/(2*%pi))*(q*g*12/(I*12^2))^(1/2)\n",
"//part 2 \n",
"b1=(q*g*12/(I*12^2))\n",
"a1=(b1/10.15)^(1/2)//by reducing equation 15.28\n",
"nd=(1/(2*%pi))*(b1-(a1/2)^2)^(1/2)\n",
"A=nd/n\n",
"printf('\nThe frequency of natural vibration = %.2f per sec\nThe frequency of damped vibration = %.2f per sec\nThe ratio nd/n = %.3f\n',n,nd,A)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 15.6: Find_the_amplitude.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//to find the amplitude if the period of the applied force coincided with the natural period of vibration of the system\n",
"clc\n",
"//given\n",
"m=20//lb\n",
"k=50//lb/in\n",
"F=30//lb\n",
"w=50//sec^-1 \n",
"g=32.2//ft/s^2\n",
"d=m/k\n",
"x=F/k//extension of the spring\n",
"b=g*12/d\n",
"a=(b/30.02)^(1/2)//from equation 15.28\n",
"D=1/((1-w^2/b)^2+a^2*w^2/b^2)^(1/2)\n",
"Af=D*x//amplitude of forced vibration \n",
"D=(b/a^2)^(1/2)//At resonance\n",
"A=D*x//amplitude at resonance\n",
"printf('\nAmplitude of forced vibrations = %.3f in\nAmplitude of the forced vibrations at resonance = %.2f in',Af,A)\n",
""
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 15.7: Fractio.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//to find the fraction of the applied force transmitted at 1200 rpm and the amplitude of forced vibrations of the machines at resonance\n",
"clc\n",
"//given\n",
"e=1/30\n",
"n=1200//rpm\n",
"w=%pi*n/30\n",
"m=3//lb\n",
"g=32.2//ft/s^2\n",
"stroke=3.5//in\n",
"r=stroke/2\n",
"k=(1+1/e)^(1/2)//nf/n=k\n",
"d=(k/187.7)^2\n",
"W=200//lb ; given\n",
"s=W/d//combined stiffness\n",
"p=1/14.1//As a^2/b=1/198\n",
"T=((1+p^2*k^2/((1-k^2)^2+p^2*k^2)))^(1/2)//actual value of transmissibility\n",
"F=(m/g)*w^2*r/12//maximum unbalanced force transmitted on the machine\n",
"Fmax=F*T//maximum force transmitted to the foundation\n",
"//case b\n",
"E=((1+p^2)/(p^2))^(1/2)\n",
"Nreso=215.5//rpm\n",
"Fub=F*(Nreso/n)^2\n",
"Ftmax=E*Fub\n",
"D=E//dynamic magnifier\n",
"del=Fub/152//static deflection\n",
"A=del*D\n",
"printf('\na) Maximum force transmitted at 1200 rpm = %.f lb\nb) The amplitude of the forced vibrations of the machine at resonance = %.3f in\n Force transmitted = %.f lb\n',Fmax,A,Fub)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 15.8: Frequency.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//To find the frequency of the natural torsional oscillations of the system\n",
"clc\n",
"//given\n",
"l1=11//in\n",
"l2=10//in\n",
"l3=15//in\n",
"l4=4//in\n",
"l5=10//in\n",
"d1=3//in\n",
"d2=5//in\n",
"d3=3.5//in\n",
"d4=7//in\n",
"d5=5//in\n",
"I1=1500//lb ft^2\n",
"I2=1000//lb ft^2\n",
"leq=3//in from 15.49\n",
"g=32.2//ft/s^2\n",
"C=12*10^6\n",
"J=%pi*leq^4/32\n",
"l=l1+l2*(leq/d2)^4+l3*(leq/d3)^4+l4*(leq/d4)^4+l5*(leq/d5)^4\n",
"la=I2*l/(I1+I2)\n",
"qa=C*J/la\n",
"n=(1/(2*%pi))*(qa*g*12/(I1*12^2))^(1/2)\n",
"printf('\nThe frequency of the natural torsional oscillation of the system = %.1f per sec',n)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 15.9: f_r_e_q_u_e_n_c_i_e_s_of_the_free_torsional.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//To find the frequencies of the free torsional vibrations of the system\n",
"clc\n",
"//given\n",
"Ia=2.5//ton ft^2\n",
"Ib=7.5//ton ft^2\n",
"Ic=3//ton ft^2\n",
"g=32.2//ft/s^2\n",
"AB=9.5//ft\n",
"BC=25//ft\n",
"d=8.5//in\n",
"C=11.8*10^6//lb/in^2\n",
"k=Ic/Ia//la/lc=k\n",
"lc1=(25.6+(25.6^2-4*114.1)^(1/2))/2//from 1 and 2 , reducing using quadratic formula\n",
"lc2=(25.6-(25.6^2-4*114.1)^(1/2))/2//from 1 and 2 , reducing using quadratic formula\n",
"la1=lc1*k\n",
"la2=lc2*k\n",
"J=%pi*d^4/32\n",
"q=C*J/(lc1*12)//torsional stiffness\n",
"IC=Ic*2240*12^2/(g*12)//moment of inertia\n",
"nc=(1/(2*%pi))*(q/IC)^(1/2)//fundamental frequency of vibration\n",
"a1=nc*60\n",
"a=floor(a1)\n",
"n=16*(lc1/lc2)^(1/2)\n",
"b=n*60\n",
"printf('\nFundamental frequency of vibration = %.f per min\nTwo node frequency = %.f per min\n',a,b)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Scilab",
"language": "scilab",
"name": "scilab"
},
"language_info": {
"file_extension": ".sce",
"help_links": [
{
"text": "MetaKernel Magics",
"url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
}
],
"mimetype": "text/x-octave",
"name": "scilab",
"version": "0.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|