1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 2: Capacitance"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.10: calculating_H_field_intensity.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;\n",
"i=0.1; //current in Ampere\n",
"r=0.05; //radius in metre\n",
"h=(i*100)/(2*(%pi)*r); //calculating h\n",
"disp(h,'H field intensity for 100 turns in A/metre = '); //displaying result"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.11: calculating_H_field_intensity.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;\n",
"disp('Radius is doubled.Therefore, H filed becomes half = 16 A/metre.'); //displaying result"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.12: calculating_H_field_intensity.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;\n",
"disp('H field at the center is nearly the same.'); //displaying result"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.13: calculating_H_field_intensity.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;\n",
"i=10; //current\n",
"r=0.005; //radius in metre\n",
"h1=(i)/(4*2*(%pi)*r); //at half radius H is (1/4)th\n",
"disp(h1,'H field intensity at one half of radius in A/metre = '); //displaying result\n",
"h2=(i)/(2*(%pi)*0.01); //calculating H at surface\n",
"disp(h2,'H field intensity at surface in A/metre = '); //displaying result\n",
"disp('H field intensity is proportional to radius.Therefore, it is zero at the center.'); //displaying result"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.14: calculating_time.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;\n",
"v=2; //voltage in volts\n",
"l=10^-3; //inductance in Henry\n",
"i=10*10^-3; //current\n",
"di=v/l; //change in current in A/sec\n",
"t=i/di; //calculating time\n",
"disp(t,'Time required to reach 0.01 A in sec = '); //displaying result"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.15: calculating_energy.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;\n",
"v=2; //voltage in volts\n",
"l=10^-3; //inductance in Henry\n",
"i=10*10^-3; //current\n",
"e=(1/2)*l*i*i; //calculating energy\n",
"disp(e,'Energy in Joule = '); //displaying result"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.16: calculating_H_field.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;\n",
"p=20*10^-2; //path length in metre\n",
"m=20000; //relative permeability of magnetic material\n",
"i=2*10^-3; //current in Ampere\n",
"n=500; //no of turns\n",
"h=n*i; //calculating A/turn for 20 cm\n",
"disp(h,'H for 20 cm in A/turn = '); //displaying result\n",
"a=h/(20*10^-2); //calculating H per metre\n",
"disp(a,'H field per metre in A/metre = '); //displaying result"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.17: calculating_B_field.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;\n",
"mo=(4*(%pi)*10^-7); //relative permeability of free space\n",
"p=20*10^-2; //path length in metre\n",
"m=20000; //relative permeability of magnetic material\n",
"i=2*10^-3; //current in Ampere\n",
"n=500; //no of turns\n",
"H=n*i; //calculating A/turn for 20 cm\n",
"disp(H,'H for 20 cm in A/turn = '); //displaying result\n",
"a=H/(20*10^-2); //calculating H per metre\n",
"disp(a,'H field per metre in A/metre = '); //displaying result\n",
"B=(m*mo*a); //calculating flux\n",
"disp(B,'Flux in Tesla = '); //displaying result"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.18: calculating_flux.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;\n",
"area=5*10^-4; //area\n",
"mo=(4*(%pi)*10^-7); //relative permeability of free space\n",
"p=20*10^-2; //path length in metre\n",
"m=20000; //relative permeability of magnetic material\n",
"i=2*10^-3; //current in Ampere\n",
"n=500; //no of turns\n",
"H=n*i; //calculating A/turn for 20 cm\n",
"disp(H,'H for 20 cm in A/turn = '); //displaying result\n",
"a=H/(20*10^-2); //calculating H per metre\n",
"disp(a,'H field per metre in A/metre = '); //displaying result\n",
"B=(m*mo*a); //calculating flux\n",
"disp(B,'Flux in Tesla = '); //displaying result\n",
"l=B*area; //calculating flux density\n",
"disp(l,'Flux Density in Weber/metre = '); //diaplaying result"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.19: calculating_time.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;\n",
"v=0.04; //voltage per turn in Volt\n",
"area=5*10^-4; //metre square\n",
"B=v/area; //calculating B\n",
"disp(B,'B in Tesla/sec = '); //displaying result\n",
"H=B/(4*(%pi)*10^-7*20000); //calculating H\n",
"disp(H,'H in A/m = '); //displaying result\n",
"disp('Therefore, for 500 turns and 20 cm = 1.27 A/sec.25.4 ms for 20 mA and 38.1 ms for 30 mA'); //displaying result"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.1: calculating_capacitance.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;\n",
"disp('Example 2.1');\n",
"v=3000; //volume in metre cube.\n",
"theta=0.2; //theta in owu(open window unit).\n",
"s=1850; //area in metre cube.\n",
"as=theta*s; //calculating total absorbtion of surface.\n",
"T=(0.165*v)/as //calculating T using Sabine formula\n",
"disp(T,'Reverberation time of Room = '); //Displaying Result."
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.20: calculating_lowest_frequency_square_wave.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;\n",
"phi=0.5; //flux density in Tesla\n",
"v=10; //peak to peak voltage\n",
"disp('At 80 Tesla/sec it takes 1/160 sec to reach 0.5 Tesla.Therefore,to reach maximum B in opposite sense and return to zero it will take 4/160 sec.'); //displaying result\n",
"disp('This is a frequency of 40 Hz.'); //displaying result"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.21: calculating_energy.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;\n",
"v=7.5*10^-5; //volume in metre cube\n",
"b=1; //flux in tesla\n",
"mo=4*(%pi)*10^-7; //permeability of free space\n",
"m=20000; //permeability of material\n",
"h=b/(m*mo); //calculating field intensity\n",
"e=(1/2)*b*h*v; //calculating energy\n",
"disp(e,'Energy in Joule = '); //displaying energy"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.22: calculating_H_field.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;\n",
"v=7.5*10^-5; //volume in metre cube\n",
"b=1; //flux in tesla\n",
"mo=4*(%pi)*10^-7; //permeability of free space\n",
"m=20000; //permeability of material\n",
"h=b/(m*mo); //calculating field intensity\n",
"e=(1/2)*b*h*v; //calculating energy\n",
"disp(e,'Energy in Joule = '); //displaying energy\n",
"disp(h,'Field in the gap = '); //displaying field intensity\n",
"disp(h*10^-2,'Current per metre = Therefore in the gap of 0.001 m current required in mA = '); //displaying result"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.2: calculating_charge.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;\n",
"disp('Example 2.2');\n",
"v=120000; //volume in metre cube.\n",
"t=1.5; //time in second.\n",
"s=25000; //area in metre cube.\n",
"a=(0.16*v)/(t*s); //using Sabine formula for calculating a\n",
"disp(a,'Average Absorbing Power of Surface = '); //Displaying Result."
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.3: calculating_D.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;\n",
"disp('Example 2.3');\n",
"v=6000 //Volume in metre cube.\n",
"as=20 //surface absorbtion in owu(open window unit).\n",
"T=(0.165*v)/(as); //calculating T using Sabine Formula.\n",
"disp(T,'Reverberation Time = '); //Displaying Result."
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.4: calculating_current.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;\n",
"disp('Example2.4');\n",
"v=3500; //volume in metre cube.\n",
"n1=370-300; //no. of audience on wooden seats.\n",
"n2=300-70; //no. of empty wooden seats.\n",
"a1s1=0.04*60; //absorption due to wooden doors.\n",
"a2s2=0.03*700; //absorption due to plastered walls.\n",
"a3s3=0.06*50; //absorption due to glass work.\n",
"a4s4=4.2*370; //absorption due to audience on spungy and wooden \n",
"//seats.\n",
"a5s5=2*230; //absorption due to empty seats.\n",
"sum=a1s1+a2s2+a3s3+a4s4+a5s5; //total absorption of cinema hall.\n",
"T=(0.165*v)/sum; //calculating T using Sabine Formula.\n",
"disp(T,'Reverberation Time = '); //Displaying Result."
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.5: calculating_time_constant.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;\n",
"disp('Example 2.5');\n",
"l=10; //length in centimetres.\n",
"Y=20*10^11; //Young's Modulus in dyne/cm square.\n",
"R=8; //Density in gram/cc\n",
"n=(1/(2*l))*sqrt(Y/R); //calculating frequency of vibration using \n",
"//young's modulus.\n",
"disp(n,'Frequency of vibration in Hz.'); //Displaying Result. "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.6: calculating_voltage.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;\n",
"disp('Example 2.7');\n",
"t=0.1; //thickness in centimetre.\n",
"Y=8.75*10^11; //Young's Modulus in dyne/cm square.\n",
"R=2.654; //Density in gram/cm square.\n",
"n=(1/(2*t))*sqrt(Y/R); //calculating frequency using Young's modulus.\n",
"disp(n,'Frequency of Vibration in Hz = '); //Displaying Result."
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.7: calculating_resistance.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;\n",
"disp('Example 2.7');\n",
"K=2.026*10^9; //Bulk Modulus in N/m square.\n",
"R=10^3; //Density in Kg/m cube.\n",
"V=sqrt(K/R); //Calculating speed using Bulk Modulus.\n",
"disp(V,'Velocity of sound waves in water in m/sec = '); //displaying result."
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.8: calculating_energy.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;\n",
"disp('Example 2.8');\n",
"Y=1.41; //Young's Modulus.\n",
"R=1.293*10^-3; //Density of air in g/centimetre cube.\n",
"P=76*13.6*980; //atmospheric pressure in dyne/cm square.\n",
"V=sqrt((Y*P)/R); //calculating speed using young's modulus.\n",
"disp(V,'Speed of ultrasonic wave in air at n.t.p. in cm/sec = '); //displaying result. \n",
"disp(V*10^-2,'Speed in m/sec'); //displaying result."
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.9: finding_H_field_intensity.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;\n",
"r=0.1; //in metre\n",
"H=3/(2*(%pi)*r); //calculating H field intensity\n",
"disp(H,'H field intensity in A/metre = '); //displaying result"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Scilab",
"language": "scilab",
"name": "scilab"
},
"language_info": {
"file_extension": ".sce",
"help_links": [
{
"text": "MetaKernel Magics",
"url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
}
],
"mimetype": "text/x-octave",
"name": "scilab",
"version": "0.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|