1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 1: Pulse Fundamentals"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 1.1: Duty_cycle.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//Caption:Find (a)Pulse amplitude (b)PRF (c)PW (d)Duty cycle and (e)M/S ratio\n",
"//Exa:1.1\n",
"clc;\n",
"clear;\n",
"close;\n",
"v=1//Vertical scale(Volt per division)\n",
"h=0.1//Horizontal scale(Milli sec per division)\n",
"pv=3.5//Amplitude of pulse in divisions\n",
"t=6//Time in divisions\n",
"pw=2.5//Width of pulse\n",
"P=pv*v\n",
"disp(P,'(a)Pulse Amplitude (in volts)=')\n",
"T=t*h\n",
"prf=(1/T)*1000\n",
"disp(prf,'(b)PRF(in pps)=')\n",
"p=pw*h\n",
"disp(p,'(c)PW (in ms)=')\n",
"sw=pv*h\n",
"d=(p/T)*100\n",
"disp(d,'(d)Duty cycle(in %)=')\n",
"m=p/sw\n",
"disp(m,'(e)M/S ratio=')"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 1.2: pulse_amplitude.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//Caption:Determine (a)Pulse amplitude,tilt,rise time,fall time,PW,PRF,mark to space ratio,and duty cycle (b)tilt\n",
"//Ex1.2\n",
"clc;\n",
"clear;\n",
"close;\n",
"vs=100//Vertical scale(in mv/divisions)\n",
"hs=100//Horizontal scale(in micro sec/division)\n",
"e1=380//first peak of waveform(in mv)\n",
"e2=350//second peak of waveform(in mv)\n",
"E=(e1+e2)/2\n",
"t=(e1-e2)*100/E\n",
"tr=0.3*hs\n",
"tf=0.4*hs\n",
"T=5*hs\n",
"prf=10^6/T\n",
"pw=2.2*hs\n",
"sw=2.8*hs\n",
"ms=pw/sw\n",
"dc=(pw*100)/T\n",
"disp(dc,ms,pw,prf,tf,tr,t,E,'(a)Pulse Amplitude(in mv),tilt(in %),rise time(in micro sec),fall time(in micro sec),PW(in micro sec),PRF(in pps),M/s ratio,Duty cycle(in %)=')\n",
"eb=0.5*vs\n",
"ee=2.25*vs\n",
"tb=eb*100/ee\n",
"disp(tb,'(b)Tilt(in %)=')"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 1.3: Average_voltage_level.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//Caption:Determine average voltage level\n",
"//Ex1.3\n",
"clc;\n",
"clear;\n",
"close;\n",
"vs=2//Vertical scale(V/div)\n",
"hs=1//Horizontal scale(ms/div)\n",
"v1=8//Amplitude of signal in (+)ve direction (in volts)\n",
"v2=-1//Amplitude of signal in (-)ve direction (in volts)\n",
"t1=0.8//Horizontal divisions for v1\n",
"t2=2.2//Horizontal divisions for v2\n",
"T=3*hs\n",
"T1=t1*hs\n",
"T2=t2*hs\n",
"Va=((T1*v1)+(T2*v2))/T\n",
"disp(Va,'Average voltage (in volts)=')"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 1.4: Determine_the_upper_3db_frequency_of_the_amplifier.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//Caption:Determine the upper 3db frequency of the amplifier\n",
"//Ex1.4\n",
"clc;\n",
"clear; \n",
"close;\n",
"tr=1//Rise time(in micro sec)\n",
"fu=0.35*10^6/tr\n",
"disp(fu,'The upper 3db frequency of the amplifier(in hertz)=')"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 1.5: Determine_Minimum_upper_cut_frequency_Minimum_pulse_width_and_duty_cycle.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//Caption:Determine (a)Minimum upper cut frequency (b)Minimum pulse width and duty cycle\n",
"//Ex1.5\n",
"clc;\n",
"clear;\n",
"close;\n",
"prf=1.5//in Khz\n",
"dc=3//Duty cycle(in %)\n",
"pa=1.5//Amplitude of pulse(in Khz)\n",
"fu=1//High frequency limit(in Mhz)\n",
"tr=10//Rise time(in %)\n",
"pw=(dc/100)*10^3/pa\n",
"Tr=(tr/100)*pw\n",
"fh=0.35*10^6/Tr\n",
"disp(fh,'(a)Minimum upper cut frequency(in hertz)=')\n",
"Tr2=0.35*10^(-6)/fu\n",
"Pw=10*Tr2\n",
"dc=Pw*100*(pa*1000)\n",
"disp(dc,Pw,'(b)Pulse width(in sec) and Duty cycle(in %)=')"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 1.6: EX1_6.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//Caption:Calculate a. Rise time in output waveform b. Minimum upper cut off frequency and displayed rise time\n",
"//Ex1.6\n",
"clc;\n",
"clear;\n",
"close;\n",
"tr=10//Rise time of input waveform(in micro sec)\n",
"fu=350//Upper cut off frequency(in KHz)\n",
"ti=100//Input rise time(in ns)\n",
"trc=0.35*(10^(-3))/350\n",
"tro=sqrt(((tr)*(10^(-6)))^2+(trc^2))*10^6\n",
"disp(tro,'(a)Rise Time(in Micro sec)=')\n",
"tc=ti*(10^(-9))/3\n",
"fh=0.35*10^(-6)/tc\n",
"Tro=sqrt((ti*(10^(-9)))^2+(tc^2))*10^9\n",
"disp(Tro,fh,'(b)Minimum upper cut off frequency(in Mhz) and rise time(in ns)=')"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 1.7: Calculate_lowest_input_frequency.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//Caption:Calculate lowest input frequency \n",
"//Exa:1.7\n",
"clc;\n",
"clear;\n",
"close;\n",
"fl=10//Lower cutoff frequency(in hertz)\n",
"t=0.02//Tilt on output waveform\n",
"f=%pi*fl/(t*1000)\n",
"disp(f,'Lowest input frequency(in Khz)=')"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 1.8: Determine_upper_cutoff_frequency_and_lower_cutoff_frequency.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//Caption:Determine upper cutoff frequency and lower cutoff frequency\n",
"//Ex:1.8\n",
"clc;\n",
"clear;\n",
"close;\n",
"f=1//frequency of square wave(in khz)\n",
"tr=200//rise time of output(in ns)\n",
"t=0.03//fractional tilt\n",
"fh=0.35*10^3/tr\n",
"disp(fh,'(a)upper cutoff frequency(in mhz)=') \n",
"fl=f*t*1000/%pi\n",
"disp(fl,'(b)Lower cutoff frequency(in hz)=')"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 1.9: Determine_upper_and_lower_Frequencies.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//Caption:Determine upper and lower Frequencies\n",
"//Ex:1.9\n",
"clc;\n",
"clear;\n",
"close;\n",
"tr=30//Rise time(in micro sec)\n",
"PRF=2000//Pulse repetition Frequency(in pps)\n",
"t=0.082//Tilt(in %)\n",
"Pw=220//Pulse width(in micro sec)\n",
"fh=0.35*10^(6)/tr\n",
"fl=t*10^6/(2*%pi*Pw)\n",
"disp(fl,fh,'Upper and lower frequencies(in hz)=')"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Scilab",
"language": "scilab",
"name": "scilab"
},
"language_info": {
"file_extension": ".sce",
"help_links": [
{
"text": "MetaKernel Magics",
"url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
}
],
"mimetype": "text/x-octave",
"name": "scilab",
"version": "0.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|