summaryrefslogtreecommitdiff
path: root/Solid_State_Physics_by_P_K_Palanisamy/9-Semiconductors.ipynb
blob: a43d9b73dbdf845159f50e85dceb8a343fc5e19d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
{
"cells": [
 {
		   "cell_type": "markdown",
	   "metadata": {},
	   "source": [
       "# Chapter 9: Semiconductors"
	   ]
	},
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 9.10: Conductivity_and_Position_of_Ef_above_the_intrinsic_level.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Scilab Code Ex9.10: Page-9.31 ; (2004)\n",
"clc;clear;\n",
"ni = 1.5e+16;  // Intrinsic Carrier concentration at room temperature\n",
"mu_e = 0.135;    //  Mobility of electron; m^2V^-1s^-1\n",
"e = 1.6e-19;    //  Electronic charge, C\n",
"Nd = 1e+23;  // Impurity atoms , per metrecube\n",
"T = 300;    // Temperature, Kelvin \n",
"k = 1.38e-23;    // Boltzman constant,joule per kelvin\n",
"mu_h = 0.048;    //  Mobility of holes, m^2V^-1s^-1\n",
"sigma = ni*e*(mu_e+mu_h);  // Conductivity, mho per meter\n",
"p = ni^2/Nd;    // Hole concentration, per metrecube\n",
"sigma_ex = Nd*e*mu_e;  // Conductivity with donor type impurities, mho per meter\n",
"E_F =(3/(4*e))*k*T*(log(0.135/0.048)); // Position of fermi level above the intrinsic level, eV \n",
"// mu is inversely propotional to mass \n",
"printf('\nConductivity of silicon = %3.2e mho per meter', sigma);\n",
"printf('\nHole concentration = %4.2e per metrecube', p);\n",
"printf('\nConductivity with donor type impurities = %4.2e mho per meter', sigma_ex);\n",
"printf('\nPosition of fermi level above the intrinsic level = %4.2f eV', E_F);\n",
"\n",
"//Results\n",
"//  Conductivity of silicon = 4.39e-04 mho per meter\n",
"//  Hole concentration = 2.25e+09 per metrecube\n",
"//  Conductivity with donor type impurities = 2.16e+03 mho per meter\n",
"//    Position of fermi level above the intrinsic level = 0.02 eV "
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 9.11: Intrinsic_carrier_concentration_and_conductivity_in_germanium.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Scilab Code Ex9.11: Page-9.32 ; (2004)\n",
"clc;clear;\n",
"e = 1.6e-19;    //  Electronic charge, C\n",
"Eg = 0.7*e;  // Band gap energy, joules\n",
"mu_e = 0.4;    //  Mobility of electron; m^2V^-1s^-1\n",
"mu_h = 0.2;    //  Mobility of holes, m^2V^-1s^-1\n",
"m   = 9.1e-31;  //  Mass of electron, kg\n",
"h = 6.63e-34;   // Plancks Constant, Js\n",
"T = 300;    // Temperature, Kelvin \n",
"k = 1.38e-23;    // Boltzman constant,joule per kelvin\n",
"C = 2*(2*%pi*T*m*k/h^2)^(3/2); // Constant parameter\n",
"ni = C*exp((-Eg)/(2*k*T));    // Carrier concentration at room temperature\n",
"sigma = ni*e*(mu_e+mu_h);  // Conductivity, mho per meter\n",
"printf('\nCarrier concentration at room temperature = %4.2e per metrecube', ni);\n",
"printf('\nConductivity of silicon = %3.2f mho per meter', sigma);\n",
"\n",
"\n",
"//Results\n",
"//  Carrier concentration at room temperature = 3.34e+19 per metrecube\n",
"//  Conductivity of silicon = 3.20 mho per meter "
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 9.12: Forbidden_energy_band_gap.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Scilab Code Ex9.12: Page-9.32 ; (2004)\n",
"clc;clear;\n",
"e = 1.6e-19;    //  Electronic charge, C\n",
"mu_e = 0.36;    //  Mobility of electron; m^2V^-1s^-1\n",
"mu_h = 0.17;    //  Mobility of holes, m^2V^-1s^-1\n",
"rho = 2.12;     // Resistivity of sample, ohm metre \n",
"sigma = 1/rho;  // Conductivity of sample, mho per meter\n",
"m   = 9.1e-31;  //  Mass of electron, kg\n",
"h = 6.63e-34;   // Plancks Constant, Js\n",
"T = 300;    // Temperature, Kelvin \n",
"k = 1.38e-23;    // Boltzman constant,joule per kelvin\n",
"// But  ni = C*exp((-Eg)/(2*k*T));    // Carrier concentration at room temperature, therefore\n",
"C = 2*(2*%pi*T*m*k/h^2)^(3/2); // Constant parameter\n",
"ni = sigma/(e*(mu_e+mu_h));  // Carrier concentration, per metercube\n",
"b = C/ni;   // Ratio for simplicity\n",
"Eg = 2/e*k*T*log(b); // Band gap energy, joules\n",
"\n",
"printf('\nBand gap energy = %5.4f eV', Eg);\n",
"\n",
"//Result\n",
"//  Band gap energy= 0.7927 eV "
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 9.13: Hall_Voltage_of_a_semiconductor.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Scilab Code Ex9.13:  Page-9.45 ; (2004)\n",
"clc;clear;\n",
"RH = 3.66e-4;    // Hall coefficent, meter cube/C\n",
"t = 1e-03;  //  thickness of the specimen, m\n",
"Bz = 0.5;   // Magnetic flux density, wb per meter square\n",
"Ix = 1e-2; //  Current , A\n",
"VH = RH*Ix*Bz/t;    // Voltage across specimen, volt\n",
"printf('\nVoltage across specimen = %3.2f  millivolt', VH/1e-3);\n",
"\n",
"// Result\n",
"// Voltage across specimen = 1.83  millivolt"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 9.14: Hall_coefficient_of_a_semiconductor.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Scilab Code Ex9.14: Hall coefficent of a semiconductor : Page-9.46 ; (2004)\n",
"clc;clear;\n",
"Vy = 37e-06;    // Voltage across specimen, volt\n",
"t = 1e-03;  //  thickness of the specimen, m\n",
"Bz = 0.5;   // Magnetic flux density, wb per meter square\n",
"Ix = 20e-3; //  Current , A\n",
"RH = Vy*t/(Ix*Bz);    // Hall coefficent, meter cube/C\n",
"printf('\nHall coefficent, meter cube/C = %3.1e  meter cube/C', RH);\n",
"\n",
"// Result\n",
"// Hall coefficent, meter cube/C = 3.7e-06  meter cube/C "
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 9.15: Mobility_density_and_nature_of_semiconductor.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Scilab Code Ex9.15: Page-9.46 ; (2004)\n",
"clc;clear;\n",
"e = 1.6e-19;    //  Electronic charge, C\n",
"RH = -7.35e-5;    // Hall coefficent, meter cube/C\n",
"sigma = 200; //  Conductivity of the Si specimen, per ohm per metre\n",
"n = -1/(RH*e);   // Electron density, per metre cube\n",
"mu = sigma/(n*e);    //  Mobility of the charge carriers, square meter per voly per sec\n",
"printf('\nElectron density = %3.3e per metre cube', n);\n",
"printf('\nMobility = %3.3f square meter per volt per sec', mu);\n",
"printf('\nAs the RH is negative, so specimen is n-type');\n",
"\n",
"//Result\n",
"//  Electron density = 8.503e+22 per metre cube\n",
"//  Mobility = 0.015 square meter per volt per sec\n",
"//  As the RH is negative, so specimen is n-type  "
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 9.16: Hall_Voltage.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Scilab Code Ex9.16: Page-9.47 ; (2004)\n",
"clc;clear;\n",
"e = 1.6e-19;    //  Electronic charge, C\n",
"B = 1.5;  // Magnetic field, tesla\n",
"I = 50; //  Current, ampere\n",
"n = 8.4e+28;    // Electron density, per metre cube\n",
"t = 0.5e-2; //  thickness of slab, metre\n",
"RH = 1/(n*e);   // Hall coefficent\n",
"V_H = RH*I*B/t;    //  Hall voltage, volt \n",
"printf('\nHall Voltage = %3.3f micro volt', V_H/1e-6);\n",
"\n",
"//Result\n",
"//  Hall Voltage = 1.116 micro volt "
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 9.17: Mobility_and_number_of_Charge_carrier.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Scilab Code Ex9.17: Mobility and no of Charge carrier : Page-9.48 ; (2004)\n",
"clc;clear;\n",
"RH = 3.66e-4;  // Hall Coefficient, metrcube/C\n",
"e = 1.6e-19;    //  Electronic charge, C\n",
"rho = 8.93e-3;  // Resistivity of sample, ohm meter \n",
"n = 1/(RH*e);   // Number of charge carrier, per metre cube\n",
"mu_e = RH/rho;    //  Mobility of electron, m^2 per volt per sec\n",
"printf('\nNumber of charge carrier = %3.3e per metre cube', n);\n",
"printf('\nMobility of electron = %4.5f squaremetre per volt per sec', mu_e);\n",
"\n",
"//Results\n",
"//  Number of charge carrier = 1.708e+22 per metre cube\n",
"//  Mobility of electron = 0.04099 m^2 per volt per sec "
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 9.1: Resistivity.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Scilab Code Ex9.1:  Page-9.24 ; (2004)\n",
"clc;clear;\n",
"ni = 2.37e+19;  // Carrier concentration at room temperature\n",
"mu_e = 0.38;    //  mobility of electron; m^2V^-1s^-1\n",
"e = 1.6e-19;    //  electronic charge, C\n",
"mu_h = 0.18;    //  mobility of holes; m^2V^-1s^-1\n",
"sigma = ni*e*(mu_e+mu_h);  // conductivity, mho.m^-1\n",
"rho = 1/sigma;  //  Resistivity in Ge, ohm.m\n",
"printf('\nConductivity in Ge = %4.2f mho.per m', sigma);\n",
"printf('\nResistivity in Ge = %5.3f ohm.m', rho);\n",
"\n",
"//Results\n",
"//  Conductivity in Ge = 2.12 mho.per m\n",
"//  Resistivity in Ge = 0.471 ohm.m  "
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 9.2: Determination_of_Fermi_level.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Scilab Code Ex9.2:  Page-9.24 (2004)\n",
"clc;clear;\n",
"Eg = 1.12;    // Bandgap of silicon, eV\n",
"me = 0.12*9.1e-031;    // Effective Mass of the electron, kg\n",
"e = 1.6e-19; //  Electronic charge, C\n",
"mh = 0.28*9.1e-031;    // Effective Mass of the hole, kg\n",
"k = 1.38e-23;    // Boltzman constant,  joule per kelvin\n",
"T = 300;        //  temperature, K\n",
"EF = (Eg/2)+3/4*k*T*(log(2.333))/e; // EF = E(Eg/2)+3/4*k*T*(log(2.333))/e;  Formula\n",
"\n",
"printf('\nThe position of Fermi Level = %4.3f eV', EF);\n",
"\n",
"// Result\n",
"// The position of Fermi Level = 0.576 eV "
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 9.3: Number_of_intrinsic_carriers_at_300K.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Scilab Code Ex9.3: Number of intrinsic carriers at 300K: Page-9.26 ; (2004)\n",
"clc;clear;\n",
"e = 1.6e-19;    //  Electronic charge, C\n",
"m   = 9.1e-31;  //  Mass of electron, kg\n",
"T = 300;    // Room temperature, K\n",
"k = 1.38e-23;   //  Boltzmann Constant, joule per kelvin \n",
"Eg = 0.7*e;   // Energy band gap of silicon, J\n",
"h = 6.626e-34;   // Plancks Constant, Js\n",
"C = 2*(2*%pi*m*k/h^2)^(3/2);    // A constant \n",
"ni = C*T^(3/2)*exp((-Eg)/(2*k*T));    // formula for carrier concentration at room temperature\n",
"printf('\nNumber of intrinsic carriers at 300K = %3.1e per cubemetre ', ni);\n",
"\n",
"//Results\n",
"//  Number of intrinsic carriers at 300K = 3.3e+19 per cubemetre "
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 9.4: Resistivity_of_Ge_sample.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Scilab Code Ex9.4:  Page-9.26 ; (2004)\n",
"clc;clear;\n",
"ni = 2.4e+19;  // Carrier concentration at room temperature\n",
"mu_e = 0.39;    //  Mobility of electron; m^2V^-1s^-1\n",
"e = 1.6e-19;    //  Electronic charge, C\n",
"mu_h = 0.19;    //  Mobility of holes, m^2V^-1s^-1\n",
"sigma = ni*e*(mu_e+mu_h);  // Conductivity, mho.m^-1\n",
"rho = 1/sigma;  //  Resistivity in Ge, ohm.m\n",
"printf('\nConductivity in Ge = %4.4f mho.per m', sigma);\n",
"printf('\nResistivity in Ge = %5.3f ohm.m', rho);\n",
"\n",
"\n",
"//Results\n",
"//  Conductivity in Ge = 2.2272 mho.per m\n",
"//  Resistivity in Ge = 0.449 ohm.m "
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 9.5: Resistance_of_Ge_rod.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Scilab Code Ex9.5: Page-9.26 ; (2004)\n",
"clc;clear;\n",
"ni = 2.5e+19;  // Carrier concentration at room temperature\n",
"mu_e = 0.39;    //  Mobility of electron; m^2V^-1s^-1\n",
"e = 1.6e-19;    //  Electronic charge, C\n",
"l = 1e-2;   //  length of Ge rod, m\n",
"w = 1e-3;   // width of Ge rod,m\n",
"t = 1e-3;   //  thickness of Ge rod, m\n",
"A = w*t;    // Area of Ge rod, meter square \n",
"mu_h = 0.19;    //  Mobility of holes, m^2V^-1s^-1\n",
"sigma = ni*e*(mu_e+mu_h);  // Conductivity, mho.m^-1\n",
"R = l/(sigma*A);  //  Resistivity in Ge, ohm.m\n",
"printf('\nResistance of Ge rod = %4.2e ohm', R);\n",
"\n",
"//Results\n",
"//  Resistance of Ge rod = 4.31e+03 ohm "
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 9.6: Conductivity_of_Si.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Scilab Code Ex9.6: Page-9.27 ; (2004)\n",
"clc;clear;\n",
"mu_e = 0.48;    //  Mobility of electron; m^2V^-1s^-1\n",
"e = 1.6e-19;    //  Electronic charge, C\n",
"m   = 9.1e-31;  //  Mass of electron, kg\n",
"mu_h = 0.013;    //  Mobility of holes, m^2V^-1s^-1\n",
"T = 300;    // Room temperature, K\n",
"k = 1.38e-23;   //  Boltzmann Constant, joule per kelvin \n",
"Eg = 1.1*e;   // Energy band gap of silicon, J\n",
"h = 6.626e-34;   // Plancks Constant, Js\n",
"C = 2*(2*%pi*m*k/h^2)^(3/2);    // A constant \n",
"ni = C*T^(3/2)*exp((-Eg)/(2*k*T));    // formula for carrier concentration at room temperature\n",
"sigma = ni*e*(mu_e+mu_h);  // Conductivity, mho per metre\n",
"\n",
"printf('\nConductivity = %3.1e mho per metre ', sigma);\n",
"\n",
"//Results\n",
"//  Conductivity = 1.2e-03 mho per metre  "
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 9.7: Electron_and_hole_concentration_in_silicon.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Scilab Code Ex9.7: Page-9.27 ; (2004)\n",
"clc;clear;\n",
"Na = 5e+23; // Concentration of boron atoms, per metrecube\n",
"Nd = 3e+23; // Concentration of arsenic atoms, per metrecube\n",
"p = Na-Nd;  // Hole concentration, per metrecube\n",
"ni = 2e+16; //  Intrinsic concentration ,per metrecube\n",
"n = ni^2/p; //  Electron concentration, per metrecube\n",
"\n",
"printf('\nHole concentration = %3.1e per metrecube ', p);\n",
"printf('\nElectron concentration = %3.1e per metrecube ', n);\n",
"\n",
"//Results\n",
"//  Hole concentration = 2.0e+23 per metrecube \n",
"//  Electron concentration = 2.0e+09 per metrecube "
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 9.8: Temperature_that_shift_the_fermi_level.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Scilab Code Ex9.8:  Page-9.28 (2004)\n",
"clc;clear;\n",
"Eg = 1;    // Bandgap of silicon, eV\n",
"e = 1.6e-19; //  Electronic charge, C\n",
"k = 1.38e-23;    // Boltzman constant,joule per kelvin\n",
"E_F = (0.6-0.5)*e;  // Fermi energy, joules\n",
"// E_F =((Ev+Ec)/2)+3/4*k*T1*(log(4));   // Ev & Ec= valance and conduction band energies (formula) \n",
"T = 4*E_F/(3*k*log(4)); //Temperature that shift the fermi level, K\n",
"\n",
"printf('\nTemperature that shift the fermi level = %4.3d K', T);\n",
"\n",
"// Result\n",
"// Temperature that shift the fermi level = 1115 K "
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 9.9: Conductivity_of_intrinsic_silicon_at_300_K.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Scilab Code Ex9.9: Page-9.29 ; (2004)\n",
"clc;clear;\n",
"ni = 1.5e+16;  // Intrinsic Carrier concentration at room temperature\n",
"mu_e = 0.13;    //  Mobility of electron; m^2V^-1s^-1\n",
"e = 1.6e-19;    //  Electronic charge, C\n",
"Nd = 4.99e+20;  // Impurity atoms , per metrecube\n",
"mu_h = 0.05;    //  Mobility of holes, m^2V^-1s^-1\n",
"sigma = ni*e*(mu_e+mu_h);  // Conductivity, mho per meter\n",
"sigma_d = Nd*e*mu_e;  // Conductivity with donor type impurities, mho per meter\n",
"sigma_a = Nd*e*mu_h;  // Conductivity with acceptor type impurities, mho per meter\n",
"printf('\nConductivity of silicon = %3.2e mho per meter', sigma);\n",
"printf('\nConductivity with donor type impurities = %4.2f mho per meter', sigma_d);\n",
"printf('\nConductivity with acceptor type impurities= %4.2f mho per meter', sigma_a);\n",
"\n",
"//Results\n",
"// Conductivity of silicon = 4.32e-04 mho per meter\n",
"// Conductivity with donor type impurities = 10.38 mho per meter\n",
"// Conductivity with acceptor type impurities= 3.99 mho per meter "
   ]
   }
],
"metadata": {
		  "kernelspec": {
		   "display_name": "Scilab",
		   "language": "scilab",
		   "name": "scilab"
		  },
		  "language_info": {
		   "file_extension": ".sce",
		   "help_links": [
			{
			 "text": "MetaKernel Magics",
			 "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
			}
		   ],
		   "mimetype": "text/x-octave",
		   "name": "scilab",
		   "version": "0.7.1"
		  }
		 },
		 "nbformat": 4,
		 "nbformat_minor": 0
}