1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 1: Bonding in Solids"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 1.1: Stability_of_gaseous_molecules.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex1.1 : Page-1.8 (2004)\n",
"clc;clear;\n",
"N = 6.022e+23; // Avogadro Number; /mol\n",
"E_A = 502; // First ionization energy of A atom, kJ/mol\n",
"E_B = -335; // Electron affinity for B atom, kJ\n",
"r = 3e-10; // Velocity of the particle at the mean position, angstrom\n",
"E_o = 8.85e-12; //Permittivity of free space, C/N^2-m^2\n",
"e = 1.6e-19; // Electronic charge, C\n",
"E_C = N*(-e^2)/(4*%pi*E_o*r)*1e-03; // The coulombic electrostatic attaction energy, kJ/mol\n",
"E = E_A + E_B + E_C; // Net change in energy per mol, kJ/mol \n",
"printf('\nNet change in energy per mol = %3d kJ/mol', E);\n",
"disp('Since net change in energy is negative, the molecule A+B- is stable.');\n",
"\n",
"// Result\n",
"// Net change in energy per mol = -295 kJ/mol \n",
"// Since net change in energy is negative, the molecule A+B- is stable. \n",
" \n",
""
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 1.2: Energy_and_separation_in_KCl_ion_pair.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex1.2 : Page-1.8 (2004)\n",
"clc;clear;\n",
"A = 4.1; // Ionization energy of K, eV\n",
"B = 3.6; // Electron affinity of Cl, eV\n",
"C = A - B; // Net energy to produce the ion pair, eV\n",
"E = C; // Coulomb energy, eV\n",
"e = 1.6e-19; // Electronic charge, C\n",
"E_o = 8.85e-12; //Permittivity of free space, C/N^2-m^2\n",
"R = e/(4*%pi*E_o*C); // R is the separation between K and Cl , nm\n",
"printf('\nThe coulomb energy E = %3.1f eV', E);\n",
"printf('\nSeparation between K and Cl, R = %4.2f nm', R/1e-09);\n",
"\n",
"// Result \n",
"// The coulomb energy E = 0.5 eV\n",
"// Separation between K and Cl, R = 2.88 nm "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 1.3: Bond_energy_of_NaCl_molecule.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex1.3 : Bond energy of NaCl molecule Page-1.9 (2004)\n",
"clc;clear;\n",
"A = 5.14; // Ionization energy of Na, eV\n",
"B = 3.65; // Electron affinity of Cl, eV\n",
"r0 = 236e-12; // Inter ionic equilibrium distance, m\n",
"e = 1.6e-19; // Electronic charge, C\n",
"E_o = 8.85e-12; //Permittivity of free space, C/N^2-m^2\n",
"Ue = -e/(4*%pi*E_o*r0); // Potential energy to produce the ion pair, eV\n",
"BE = -Ue-A+B\n",
"printf('\nThe potential energy Ue = %2.1f eV',Ue);\n",
"printf('\nThe Binding energy BE = %4.2f eV',BE);\n",
"\n",
"// Result \n",
"// The potential energy Ue = -6.1 eV\n",
"// The Binding energy BE = 4.61 eV "
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Scilab",
"language": "scilab",
"name": "scilab"
},
"language_info": {
"file_extension": ".sce",
"help_links": [
{
"text": "MetaKernel Magics",
"url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
}
],
"mimetype": "text/x-octave",
"name": "scilab",
"version": "0.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|