summaryrefslogtreecommitdiff
path: root/Satellite_Communications_by_D_Roddy/14-Satellite_Access.ipynb
blob: e6cf04e4db78ef97c95681eb2852dc78b4b2767c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
{
"cells": [
 {
		   "cell_type": "markdown",
	   "metadata": {},
	   "source": [
       "# Chapter 14: Satellite Access"
	   ]
	},
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 14.1: Compare_this_with_when_no_backoff_needed.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"//Variable Declaration\n",
"Btr=36  //Transponder Bandwidth(MHz)\n",
"B=3    //Carrier Bandwidth(MHz)\n",
"EIRP=27  //saturated EIRP(dBW)\n",
"BO=6   //Back off loss(dB)\n",
"LOSSES=196  //Combined losses(dB)\n",
"GTR=30   //Earth station G/T ratio(dB)\n",
"k=228.6  //Value of k(dB)\n",
"//Calculation\n",
"Btr1=10*log10(Btr*10**6)  //Converting transponder Bandwidth into decibels\n",
"B1=10*log10(B*10**6)  //Converting carrier Bandwidth into decibels\n",
"CNR=EIRP+GTR-LOSSES+k-Btr1 //Carrier to noise ratio for single carrier operation(dB)\n",
"CNR=round(CNR)\n",
"alpha=-BO\n",
"K=alpha+Btr1-B1  //Fraction of Bandwidth actually occupied(dB)\n",
"K=10**(K/10)  //Converting decibels to ratio\n",
"K=round(K)\n",
"//Results\n",
"printf('The downlink carrier to noise ratio is %.0f dB',CNR)\n",
"printf('Fraction of Bandwidth actually occupied is %.0f',K)\n",
"printf('No. of carriers that would be accommodated without backoff is %.f',Btr/B)"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 14.2: Determine_the_miss_probabilty.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"//Variable decalration\n",
"N=40     //No.of bits\n",
"E=5      //Maximum number of errors allowed\n",
"p=10**-3 //Average probability of error in transmission\n",
"//Calculation\n",
"Pmiss=0\n",
"for i = E+1:N\n",
"  Pmiss=Pmiss+(factorial(N)/((factorial(i)*factorial(N-i))))*(p**i)*((1-p)**(N-i))\n",
"end\n",
"Pmiss=Pmiss*10**12\n",
"//Result\n",
"printf('The probability of miss is %.1f * 10^-12',Pmiss)"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 14.3: Determine_the_probability_of_false_detection.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"//Variable decalration\n",
"N=40     //No.of bits\n",
"E=5      //Maximum number of errors allowed\n",
"//Calculation\n",
"Pfalse=0\n",
"for i = 0:E\n",
"  Pfalse=Pfalse+(factorial(N)*2**-N)/((factorial(i)*factorial(N-i)))\n",
"end\n",
"Pfalse=Pfalse*10**7\n",
"//Result\n",
"printf('The probability of miss is %.1f * 10^-7',Pfalse)"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 14.4: Calculate_the_frame_efficiency.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"//Variable ecalration\n",
"Lf=120832     //Total frame length\n",
"Tb=14         //Traffic burts per frame\n",
"Rb=2          //Reference bursts per frame\n",
"T=103         //Guard interval(symbols)\n",
"P=280         //Preamble Symbols\n",
"R=P+8         //Reference channel symbols with addition of CDC\n",
"//Calculation\n",
"OH=2*(T+R)+Tb*(T+P)   //Overhead Symbols\n",
"nF=1-(OH/(Lf))   //Frame Efficiency\n",
"//Result\n",
"printf('Hence the frame efficiency of INTELSAT frame is %.3f',nF)"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 14.5: Calculate_the_voice_channel_capacity_for_the_INTELSAT_frame.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"//Variable Declaration\n",
"Lf=120832   //Number of symbols per frame\n",
"Tf=2        //Frame period(ms)\n",
"nF=0.949    //INTELSAT fram efficiency from Example 14.4\n",
"//Calculation\n",
"Rs=(Lf/(Tf))*10**-3  //Symbol rate(megasymbol/s)\n",
"Rt=Rs*2     //Transmission Rate\n",
"n=nF*Rt*10**3/64   //Voice channel capacity\n",
"n=round(n)\n",
"//Result\n",
"printf(' The voice channel capacity for the INTELSAT frame is %.0f Channels',n)"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 14.6: Calculate_the_maximum_transmission_rate.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"//Variable Declaration\n",
"CNR=87.3   //Downlink Carrier to noise ratio(dBHz)\n",
"BER=10**-5  //Bit Error Rate Required\n",
"R=0.2   //Roll off factor\n",
"EbN0R=9.5   //Eb/N0 ratio(dB)\n",
"//Calculation\n",
"Rb=CNR-EbN0R  //Maximum Transmission Rate(dBb/s)\n",
"Rb1=10**(Rb/10) //Maximum Transmission Rate(b/s)\n",
"BIF=Rb1*1.2*10**-6/2  //IF Bandwith required\n",
"//Result\n",
"printf('The Maximum Transmission rate is %.2f dBb/s',Rb)\n",
"printf('The IF bandwidth required is %.2f MHz',BIF)"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 14.7: calculate_the_earth_station_transmitter_power_needed_for_transmission.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"//Variable Declaration\n",
"T1=1.544  //Bit rate from sec.10.4(Mb/s)\n",
"R=62     //Bit rate from sec.10.4(dBMb/s)\n",
"EbN0R=12 //Required Eb/N0 ratio for uplink(dB)\n",
"LOSSES=212 //Transmission losses of uplink(dB)\n",
"GTR=10   //G/T ratio for earth station(dB/K)\n",
"G1=46   //Uplink antenna gain(dB)\n",
"Rd=74   //Downlink Transmission Rate(dBb/s)\n",
"//Calculation\n",
"CNR=EbN0R+R  //Carrier to noise ratio for uplink(dB)\n",
"EIRP=CNR-GTR+LOSSES-228.6 //EIRP of earth station antenna\n",
"P=EIRP-G1   //Transmitted Power Required(dBW)\n",
"P=10**(P/(10))   //Transmitted Power Required(Watts)\n",
"Ri=Rd-R   //Rate increase with TDMA operation(dB)\n",
"P1=1.4+Ri  //Uplink power increase required for TDMA operation(Watts)\n",
"P2=10**(P1/(10))\n",
"//Results\n",
"printf('Earth station transmission power required for transmission of T1 baseband signal is %.2f Watts',P)\n",
"printf('Uplink power increase required for TDMA operation is %f dBWatts or %.1f Watts',P1,P2)"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 14.8: Calculate_the_processing_gain_in_decibels.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"//Variable Declaration\n",
"BIF=36   //Bandwidth of channel over which carriers are spread(MHz)\n",
"R=0.4  //Rolloff factor for filtering\n",
"Rb=64   //Information bit rate(kb/s)\n",
"BER=10**-5  //Bit error rate required\n",
"EbN0R=9.6 //Eb/N0 ratio for BER given from Fig.10.18\n",
"//Calculation\n",
"Rch=BIF*10**6/(1+R) //Rate of unspreaded signal(chips/s)\n",
"Gp=Rch/(Rb*10**3)     //Processing gain\n",
"Gp1=round(10*log10(Gp))  //Processing gain(dB)\n",
"EbN0R1=10**(EbN0R/(10))  //Converting Eb/N0 into ratio\n",
"K=1+(1.4*Gp/EbN0R1)  //Number of channels\n",
"K=floor(K)\n",
"//Result\n",
"printf('The Processing Gain is %.f dB',Gp1)\n",
"printf('An estimate of maximum number of channels that can access the system is %.f',K)"
   ]
   }
],
"metadata": {
		  "kernelspec": {
		   "display_name": "Scilab",
		   "language": "scilab",
		   "name": "scilab"
		  },
		  "language_info": {
		   "file_extension": ".sce",
		   "help_links": [
			{
			 "text": "MetaKernel Magics",
			 "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
			}
		   ],
		   "mimetype": "text/x-octave",
		   "name": "scilab",
		   "version": "0.7.1"
		  }
		 },
		 "nbformat": 4,
		 "nbformat_minor": 0
}