1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 15: Nuclear Models"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 15.2: Calculating_wavelength_and_angle.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//Example 15.2, Page 533\n",
"clc;\n",
"c=3*10^8//m/s\n",
"k=500//Mev\n",
"p=(k)/(c*6.2*10^12)\n",
"h=6.63*10^-34//in j-s\n",
"lambda=h/p\n",
"angle=0.53//in rad\n",
"r=lambda/angle\n",
"printf('\n The wavelength is %e m',lambda)\n",
"printf('\n The angle is %e m',r)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 15.4: Atomic_mass.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//Example 15.4, Page 540\n",
"clc\n",
"kb=4.44//in Mev\n",
"ka=7.70//in Mev\n",
"mb=1\n",
"mB=17\n",
"ma=4\n",
"Q=(kb*(1+(mb/mB)))-(ka*(1-(ma/mB)))\n",
"disp('Part a')\n",
"printf('\n The value of Q is %f Mev',Q)\n",
"c=3*10^8//m/s\n",
"m=Q/(931.5)\n",
"printf('\n The atomic mass of Q is %e u',m)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 15.5: Binding_energy.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//Example 15.5, Page 541\n",
"clc\n",
"M_He=4.0026033//*u, Mass of helium\n",
"M1H1=1.00782525//*u, electron mass\n",
"Mon1=1.0086654//*u, neutron mass\n",
"Mass=(2*M1H1)+(2*Mon1)\n",
"delta_M=(Mass)-M_He\n",
"printf('\n The binding energy of helium is %f *u',delta_M)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 15.7: Blank.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//Example 15.7, page 547"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 15.8: Density_and_potential.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//Example 15.8, page 550\n",
"clc\n",
"N=0.60\n",
"rho=(N)/((4/3))\n",
"printf('\n The density is %f /pi*a^3',rho)\n",
"h=6.63*10^-34//in j-s\n",
"a=1.1//F\n",
"M=1\n",
"ef=43//in Mev\n",
"En=7//in Mev\n",
"Vo=ef+En\n",
"printf('\n The depth of the net nuclear potential acting on neutron \n is %d Mev', Vo)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Scilab",
"language": "scilab",
"name": "scilab"
},
"language_info": {
"file_extension": ".sce",
"help_links": [
{
"text": "MetaKernel Magics",
"url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
}
],
"mimetype": "text/x-octave",
"name": "scilab",
"version": "0.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|