1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 5: Temperature"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.1: Calculation_of_the_LMTD.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"printf('\t example 5.1 \n');\n",
"T1=300; // hot fluid inlet temperature,F\n",
"T2=200; // hot fluid outlet temperature,F\n",
"t1=100; // cold fluid inlet temperature,F\n",
"t2=150; // cold fluid outlet temperature,F\n",
"printf('\t for counter current flow \n');\n",
"delt1=T1-t2; //F\n",
"delt2=T2-t1; // F\n",
"printf('\t delt1 is : %.0f F \n',delt1);\n",
"printf('\t delt2 is : %.0f F \n',delt2);\n",
"LMTD=((delt2-delt1)/((2.3)*(log10(delt2/delt1))));\n",
"printf('\t LMTD is :%.1f F \n',LMTD);\n",
"printf('\t for parallel flow \n');\n",
"delt1=T1-t1; // F\n",
"delt2=T2-t2; // F\n",
"printf('\t delt1 is : %.0f F \n',delt1);\n",
"printf('\t delt2 is : %.0f F \n',delt2);\n",
"LMTD=((delt2-delt1)/((2.3)*(log10(delt2/delt1))));\n",
"printf('\t LMTD is :%.0f F \n',LMTD);\n",
"//end"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.2: Calculation_of_the_LMTD_with_Equal_Outlet_Temperatures.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"printf('\t example 5.2 \n');\n",
"T1=300; // hot fluid inlet temperature,F\n",
"T2=200; // hot fluid outlet temperature,F\n",
"t1=150; // cold fluid inlet temperature,F\n",
"t2=200; // cold fluid outlet temperature,F\n",
"printf('\t for counter current flow \n');\n",
"delt1=T1-t2; //F\n",
"delt2=T2-t1; // F\n",
"printf('\t delt1 is : %.0f F \n',delt1);\n",
"printf('\t delt2 is : %.0f F \n',delt2);\n",
"LMTD=((delt2-delt1)/((2.3)*(log10(delt2/delt1))));\n",
"printf('\t LMTD is :%.0f F \n',LMTD);\n",
"printf('\t for parallel flow \n');\n",
"delt1=T1-t1; // F\n",
"delt2=T2-t2; // F\n",
"printf('\t delt1 is : %.0f F \n',delt1);\n",
"printf('\t delt2 is : %.0f F \n',delt2);\n",
"if(delt2==0);\n",
" printf('\t denominator becomes infinity so LMTD becomes Zero \n');\n",
" printf('\t LMTD is Zero \n');\n",
"else\n",
" LMTD=((delt2-delt1)/((2.3)*(log10(delt2/delt1))));\n",
"printf('\t LMTD is :%.0f F \n',LMTD);\n",
" end\n",
"//end"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.3: Calculation_of_the_LMTD.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"printf('\t example 5.3 \n');\n",
"printf('\t approximate values are mentioned in the book \n');\n",
"T1=300; // hot fluid inlet temperature,F\n",
"T2=200; // hot fluid outlet temperature,F\n",
"t1=100; // cold fluid inlet temperature,F\n",
"t2=275; // cold fluid outlet temperature,F\n",
"printf('\t for counter current flow \n');\n",
"deltc=T2-t1; //F\n",
"delth=T1-t2; // F\n",
"printf('\t delth is : %.0f F \n',delth);\n",
"printf('\t deltc is : %.0f F \n',deltc);\n",
"LMTD=((delth-deltc)/((2.3)*(log10(delth/deltc))));\n",
"printf('\t LMTD is :%.1f F \n',LMTD);\n",
"//end"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.4: Calculation_of_the_LMTD_with_One_Isothermal_Fluid.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"printf('\t example 5.4 \n');\n",
"printf('\t process is isothermal with hot fluid so temperature of hot fluid remains constant \n');\n",
"T1=300; // hot fluid inlet temperature,F\n",
"T2=300; // hot fluid outlet temperature,F\n",
"t1=100; // cold fluid inlet temperature,F\n",
"t2=275; // cold fluid outlet temperature,F\n",
"printf('\t for counter current flow \n');\n",
"delt1=T1-t2; //F\n",
"delt2=T2-t1; // F\n",
"printf('\t delt1 is : %.0f F \n',delt1);\n",
"printf('\t delt2 is : %.0f F \n',delt2);\n",
"LMTD=((delt2-delt1)/((2.3)*(log10(delt2/delt1))));\n",
"printf('\t LMTD is :%.0f F \n',LMTD);\n",
"printf('\t for parallel flow \n');\n",
"delt1=T1-t1; // F\n",
"delt2=T2-t2; // F\n",
"printf('\t delt1 is : %.0f F \n',delt1);\n",
"printf('\t delt2 is : %.0f F \n',delt2);\n",
"if(delt2==0);\n",
" printf('\t denominator becomes infinity so LMTD becomes Zero \n');\n",
" printf('\t LMTD is Zero \n');\n",
"else\n",
" LMTD=((delt2-delt1)/((2.3)*(log10(delt2/delt1))));\n",
"printf('\t LMTD is :%.0f F \n',LMTD);\n",
" end\n",
"printf('\t these are identical \n');\n",
"//end"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.5: Calculation_of_point.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"printf('\t example 5.5 \n');\n",
"printf('\t approximate values are mentioned in the book \n');\n",
"printf('\t for inlet \n');\n",
"t1=99.1; // temperature of inlet,F\n",
"t2=129.2; // temperature of outlet,F\n",
"c=.478; // Btu/(hr)*(ft)*(F/ft)\n",
"mu=2.95*2.42; // lb/(ft)(hr)\n",
"k=0.078; // Btu/(hr)*(ft)*(F/ft)\n",
"G=854000; // mass velocity,lb/(ft^2)(hr)\n",
"D=0.622/12; // diameter,ft\n",
"Re=((D)*((G)/(mu)))^(0.9);\n",
"printf('\t Re is : %.2e \n',Re);\n",
"Pr=((c)*(mu)/k)^(1/3); // prandtl number raised to power 1/3\n",
"printf('\t Pr is : %.2f \n',Pr);\n",
"Nu=0.0115*(Re)*(Pr); // formula for nusselt number\n",
"printf('\t nusselt number is : %.0f \n',Nu);\n",
"hi=((k)*(Nu)/(D)); // heat transfer coefficient\n",
"printf('\t heat transfer coefficient is : %.0f \n',hi); // caculation mistake in book\n",
"printf('\t for outlet \n');\n",
"c=.495; // Btu/(hr)*(ft)*(F/ft)\n",
"mu=2.20*2.42; // lb/(ft)(hr)\n",
"k=0.078; // Btu/(hr)*(ft)*(F/ft)\n",
"G=854000; // mass velocity,lb/(ft^2)(hr)\n",
"D=0.622/12; // diameter,ft\n",
"Re=((D)*((G)/(mu)))^(.9); // reynolds number raised to poer 0.9, calculation mistake in book\n",
"printf('\t Re is : %.2e \n',Re);\n",
"Pr=((c)*(mu)/k)^(1/3); // prandtl number raised to power 1/3\n",
"printf('\t Pr is : %.2f \n',Pr);\n",
"Nu=0.0115*(Re)*(Pr); // formula for nusselt number\n",
"printf('\t nusselt number is : %.0f \n',Nu);\n",
"hi=((k)*(Nu)/(D)); // heat transfer coefficient\n",
"printf('\t heat transfer coefficient is : %.0f \n',hi); // caculation mistake in book\n",
"//end"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.6: Calculation_of_the_Caloric_Temperature.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"printf('\t example 5.6 \n');\n",
"printf('\t approximate values are mentioned in the book \n');\n",
"T1=300; // hot fluid inlet temperature,F\n",
"T2=200; // hot fluid outlet temperature,F\n",
"t1=80; // cold fluid inlet temperature,F\n",
"t2=120; // cold fluid outlet temperature,F\n",
"printf('\t for counter current flow \n');\n",
"delT=T1-T2; // temperature difference for crude oil,F\n",
"printf('\t temperature difference for crude oil is : %.0f F \n',delT);\n",
"Kc=0.68; // from fig.17\n",
"delt=t2-t1; // temperature difference for gasoline,F\n",
"printf('\t temperature difference for gasoline is : %.0f F \n',delt);\n",
"Kc<=0.10; // from fig.17\n",
"printf('\t The larger value of K. correspQnds to the controlling heat transfer coefficient which is assumed to establish the variation of U with temperature \n');\n",
"deltc=T2-t1; //F\n",
"delth=T1-t2; // F\n",
"printf('\t deltc is : %.0f F \n',deltc);\n",
"printf('\t delth is : %.0f F \n',delth);\n",
"A=((deltc)/(delth));\n",
"printf('\t ratio of two local temperature difference is : %.3f \n',A);\n",
"Fc=0.425; // from fig.17\n",
"Tc=((T2)+((Fc)*(T1-T2))); // caloric temperature of hot fluid,F\n",
"printf('\t caloric temperature of hot fluid is : %.1f F \n',Tc);\n",
"tc=((t1)+((Fc)*(t2-t1))); // caloric temperature of cold fluid,F\n",
"printf('\t caloric temperature of cold fluid is : %.0f F \n',tc);\n",
"// end\n",
""
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Scilab",
"language": "scilab",
"name": "scilab"
},
"language_info": {
"file_extension": ".sce",
"help_links": [
{
"text": "MetaKernel Magics",
"url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
}
],
"mimetype": "text/x-octave",
"name": "scilab",
"version": "0.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|