summaryrefslogtreecommitdiff
path: root/Process_Heat_Transfer_by_D_Q_Kern/20-Additional_applications.ipynb
blob: 4a195d541a3d5ea6a65fe7ebec78c7197526be3b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
{
"cells": [
 {
		   "cell_type": "markdown",
	   "metadata": {},
	   "source": [
       "# Chapter 20: Additional applications"
	   ]
	},
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 20.1: Calculation_of_a_Jacketed_Vessel.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"printf('\t example 20.1 \n');\n",
"printf('\t approximate values are mentioned in the book \n');\n",
"T=150; // F\n",
"L=0.6; // ft\n",
"N=7500; // rev/hr\n",
"row=62.5; // lb/ft^3\n",
"mu=1.06; // at 150 F and from fig 14, lb/ft*hr\n",
"k=0.38; // Btu/(hr)*(ft^2)*(F/ft), from table 4\n",
"c=1; // Btu/(lb)*(F)\n",
"Rej=(L^2)*(N)*(row)/(mu);\n",
"printf('\t Rej is : %.1e \n',Rej);\n",
"Z=1; // Z=(mu/muw)^(0.14), regarded as 1 for water\n",
"Dj=1.01; // ft, from table 11\n",
"j=1100; // fig 20.2\n",
"hi=((j)*(k/Dj)*((c*mu/k)^(1/3))*(Z)^(0.14));\n",
"printf('\t hi is : %.0f Btu/(hr)*(ft^2)*(F) \n',hi);\n",
"hoi=1500; // Btu/(hr)*(ft^2)*(F)\n",
"Uc=((hi*hoi)/(hi+hoi)); // from eq 6.38\n",
"printf('\t Uc is : %.0f Btu/(hr)*(ft^2)*(F) \n',Uc);\n",
"Rd=0.005;\n",
"hd=(1/Rd);\n",
"printf('\t hd is : %.0f \n',hd);\n",
"UD=((Uc*hd)/(Uc+hd));\n",
"printf('\t UD is : %.0f Btu/(hr)*(ft^2)*(F) \n',UD);\n",
"A=3.43; // ft^2\n",
"Q=32600;\n",
"delt=(Q/(UD*A));\n",
"printf('\t temperature difference is : %.0f F \n',delt);\n",
"Ts=(T+delt);\n",
"printf('\t temperature of the steam : %.0f F \n',Ts);\n",
"// end"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 20.2: Calculation_of_a_Tube_Coil.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"printf('\t example 20.2 \n');\n",
"printf('\t approximate values are mentioned in the book \n');\n",
"T1=150; // F\n",
"T2=220; // F\n",
"L=0.6; // ft\n",
"N=7500; // rev/hr\n",
"row=62.5; // lb/ft^3\n",
"mu=1.06; // at 150 F and from fig 14, lb/ft*hr\n",
"k=0.38; // Btu/(hr)*(ft^2)*(F/ft), from table 4\n",
"c=1; // Btu/(lb)*(F)\n",
"Rej=(L^2)*(N)*(row)/(mu);\n",
"printf('\t Rej is : %.1e \n',Rej);\n",
"Z=1; // Z=(mu/muw)^(0.14), regarded as 1 for water\n",
"Dj=1.01; // ft, from table 11\n",
"j=1700; // fig 20.2\n",
"hi=((j)*(k/Dj)*((c*mu/k)^(1/3))*(Z)^(0.14));\n",
"printf('\t hi is : %.0f Btu/(hr)*(ft^2)*(F) \n',hi);\n",
"hoi=1500; // Btu/(hr)*(ft^2)*(F)\n",
"Uc=((hi*hoi)/(hi+hoi)); // from eq 6.38\n",
"printf('\t Uc is : %.0f Btu/(hr)*(ft^2)*(F) \n',Uc);\n",
"Rd=0.005;\n",
"hd=(1/Rd);\n",
"printf('\t hd is : %.0f \n',hd);\n",
"UD=((Uc*hd)/(Uc+hd));\n",
"printf('\t UD is : %.1f Btu/(hr)*(ft^2)*(F) \n',UD);\n",
"Q=32600;\n",
"A=(Q/(UD*(T2-T1)));\n",
"printf('\t Area is : %.2f ft^2 \n',A);\n",
"a=0.1309; // ft^2/ft\n",
"a1=(3.14*0.8*a);\n",
"printf('\t area per turn is : %.3f ft^2 \n',a1);\n",
"n=(A/a1);\n",
"printf('\t number of turns : %.1f \n',n);\n",
"// end"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 20.3: Calculation_of_a_Submerged_pipe_Coil_Slurry_Cooler.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"printf('\t example 20.3 \n');\n",
"printf('\t approximate values are mentioned in the book \n');\n",
"T1=675; // inlet hot fluid,F\n",
"T2=200; // outlet hot fluid,F\n",
"t1=120; // inlet cold fluid,F\n",
"t2=140; // outlet cold fluid,F\n",
"W=33100; // lb/hr\n",
"w=510000; // lb/hr\n",
"printf('\t 1.for heat balance \n');\n",
"printf('\t for oil \n');\n",
"c=0.64; // Btu/(lb)*(F)\n",
"Q=((W)*(c)*(T1-T2)); // Btu/hr\n",
"printf('\t total heat required for oil is : %.2e Btu/hr \n',Q);\n",
"printf('\t for water \n');\n",
"c=1; // Btu/(lb)*(F)\n",
"Q=((w)*(c)*(t2-t1)); // Btu/hr\n",
"printf('\t total heat required for water is : %.2e Btu/hr \n',Q);\n",
"delt1=T2-t1; //F\n",
"delt2=T1-t2; // F\n",
"printf('\t delt1 is : %.0f F \n',delt1);\n",
"printf('\t delt2 is : %.0f F \n',delt2);\n",
"LMTD=230;\n",
"printf('\t LMTD is :%.0f F \n',LMTD);\n",
"Tc=((T2)+(T1))/(2); // caloric temperature of hot fluid,F\n",
"printf('\t caloric temperature of hot fluid is : %.1f F \n',Tc);\n",
"tc=((t1)+(t2))/(2); // caloric temperature of cold fluid,F\n",
"printf('\t caloric temperature of cold fluid is : %.0f \n',tc);\n",
"printf('\t hot fluid:inner tube side, oil \n');\n",
"at=0.0458; // flow area, ft^2, table 11\n",
"printf('\t flow area is : %.4f ft^2 \n',at);\n",
"Gt=(W/(at)); // mass velocity,lb/(hr)*(ft^2)\n",
"printf('\t mass velocity is : %.2e lb/(hr)*(ft^2) \n',Gt);\n",
"mu2=5.56; // at 400F,lb/(ft)*(hr)\n",
"D=0.242; // ft, table 11\n",
"Ret=((D)*(Gt)/mu2); // reynolds number\n",
"printf('\t reynolds number is : %.2e \n',Ret);\n",
"jH=100; // from fig.24\n",
"Z=0.245; // Z=(k(c*mu/k)^(1/3)), Btu/(hr)*(ft)*(F/ft), fig 16\n",
"hi=((jH)*(Z/D)); //Hi=(hi/phyp),using eq.6.15,Btu/(hr)*(ft^2)*(F)\n",
"printf('\t hi is : %.0f Btu/(hr)*(ft^2)*(F) \n',hi);\n",
"ID=2.9; // ft\n",
"OD=3.5; // ft\n",
"hio=((hi)*(ID/OD)); // using eq.6.5\n",
"printf('\t Correct hio to the surface at the OD is : %.1f Btu/(hr)*(ft^2)*(F) \n',hio);\n",
"ho=150; // Btu/(hr)*(ft^2)\n",
"tw=(tc)+(((hio)/(hio+ho))*(Tc-tc)); // from eq.5.31\n",
"printf('\t tw is : %.0f F \n',tw);\n",
"tf=(tw+tc)/2;\n",
"printf('\t tf is : %.0f F \n',tf);\n",
"delt=110; // F\n",
"d0=3.5; // in, fig 10.4\n",
"Uc=((ho*hio)/(ho+hio)); // from eq 6.38\n",
"printf('\t Uc is : %.1f Btu/(hr)*(ft^2)*(F) \n',Uc);\n",
"Rd=0.01;\n",
"hd=(1/Rd);\n",
"printf('\t hd is : %.0f \n',hd);\n",
"UD=((Uc*hd)/(Uc+hd));\n",
"printf('\t UD is : %.0f Btu/(hr)*(ft^2)*(F) \n',UD);\n",
"A=(Q/(UD*(LMTD)));\n",
"printf('\t Area is : %.0f ft^2 \n',A);\n",
"a=0.917; // ft^2/ft, table 11\n",
"L=(A/(a*24));\n",
"printf('\t pipe length : %.0f \n',L);\n",
"// end"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 20.4: Calculation_of_a_Trombone_2.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"printf('\t example 20.4 \n');\n",
"printf('\t approximate values are mentioned in the book \n');\n",
"T1=450; // inlet hot fluid,F\n",
"T2=150; // outlet hot fluid,F\n",
"t1=85; // inlet cold fluid,F\n",
"t2=100; // outlet cold fluid,F\n",
"W=3360; // lb/hr\n",
"w=11100; // lb/hr\n",
"printf('\t 1.for heat balance \n');\n",
"printf('\t for SO2 \n');\n",
"c=0.165; // Btu/(lb)*(F)\n",
"Q=((W)*(c)*(T1-T2)); // Btu/hr\n",
"printf('\t total heat required for SO2 is : %.3e Btu/hr \n',Q);\n",
"printf('\t for water \n');\n",
"c=1; // Btu/(lb)*(F)\n",
"Q=((w)*(c)*(t2-t1)); // Btu/hr\n",
"printf('\t total heat required for water is : %.3e Btu/hr \n',Q);\n",
"delt1=T2-t1; //F\n",
"delt2=T1-t2; // F\n",
"printf('\t delt1 is : %.0f F \n',delt1);\n",
"printf('\t delt2 is : %.0f F \n',delt2);\n",
"LMTD=((delt2-delt1)/((2.3)*(log10(delt2/delt1))));\n",
"printf('\t LMTD is :%.0f F \n',LMTD);\n",
"R=20;\n",
"S=0.0412;\n",
"FT=0.98; // fig 18\n",
"delt=(FT*LMTD);\n",
"printf('\t delt is : %.0f F \n',delt);\n",
"Tc=((T2)+(T1))/(2); // caloric temperature of hot fluid,F\n",
"printf('\t caloric temperature of hot fluid is : %.0f F \n',Tc);\n",
"tc=((t1)+(t2))/(2); // caloric temperature of cold fluid,F\n",
"printf('\t caloric temperature of cold fluid is : %.1f \n',tc);\n",
"printf('\t hot fluid:inner tube side, SO2 \n');\n",
"at=0.0512; // flow area, ft^2, table 11\n",
"printf('\t flow area is : %.4f ft^2 \n',at);\n",
"Gt=(W/(at)); // mass velocity,lb/(hr)*(ft^2)\n",
"printf('\t mass velocity is : %.2e lb/(hr)*(ft^2) \n',Gt);\n",
"mu2=0.041; // at 300F,lb/(ft)*(hr), fig 15\n",
"D=0.256; // ft, table 11\n",
"Ret=((D)*(Gt)/mu2); // reynolds number\n",
"printf('\t reynolds number is : %.1e \n',Ret);\n",
"jH=790; // from fig.24\n",
"Z=0.006831; // Z=(k(c*mu/k)^(1/3)), Btu/(hr)*(ft)*(F/ft)\n",
"hi=((jH)*(Z/D)); //Hi=(hi/phyp),using eq.6.15,Btu/(hr)*(ft^2)*(F)\n",
"printf('\t hi is : %.1f Btu/(hr)*(ft^2)*(F) \n',hi);\n",
"ID=3.068; // ft\n",
"OD=3.5; // ft\n",
"hio=((hi)*(ID/OD)); // using eq.6.5\n",
"printf('\t Correct hio to the surface at the OD is : %.1f Btu/(hr)*(ft^2)*(F) \n',hio);\n",
"printf('\t cold fluid water \n');\n",
"L=8; // ft\n",
"G=(w/(2*L));\n",
"printf('\t G : %.0f lb/(hr)*(ft) \n',G);\n",
"mu1=1.94; // at 92.5F, lb/(ft)*(hr)\n",
"Re=(4*G/mu1);\n",
"printf('\t Re is : %.2e \n',Re);\n",
"Do=0.292; // ft\n",
"ho=(65*(G/Do)^(1/3));\n",
"printf('\t ho is : %.0f Btu/(hr)*(ft^2)*(F) \n',ho);\n",
"Uc=((ho*hio)/(ho+hio)); // from eq 6.38\n",
"printf('\t Uc is : %.1f Btu/(hr)*(ft^2)*(F) \n',Uc);\n",
"Rd=0.01;\n",
"hd=(1/Rd);\n",
"printf('\t hd is : %.0f \n',hd);\n",
"UD=((Uc*hd)/(Uc+hd));\n",
"printf('\t UD is : %.1f Btu/(hr)*(ft^2)*(F) \n',UD);\n",
"A=(Q/(UD*(LMTD)));\n",
"printf('\t Area is : %.1f ft^2 \n',A); // calculation mistake in book\n",
"a=0.917; // ft^2/ft, table 11\n",
"l=(A/(a*8));\n",
"printf('\t pipe length : %.2f \n',l);\n",
"// end"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 20.5: Calculation_of_an_Atmospheric_Jacket_Water_Cooler.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"printf('\t example 20.5 \n');\n",
"printf('\t approximate values are mentioned in the book \n');\n",
"Nt=25; // number of tubes\n",
"A=50; // total projected area\n",
"Tav=100; // F\n",
"s=28; // assumption spray, lb/(min)*(ft^2)\n",
"Do=0.0833; // ft\n",
"PH=0.1562;\n",
"Y=0.874;\n",
"Z=0.466;\n",
"E=(0.171*(Do*Y*Z)^0.1); // (E/(Do*Y*Z)^0.1)=0.171, from fig 20.10\n",
"printf('\t evaporation percentage is : %.2f \n',E);\n",
"Q=(295*500*(143-130));\n",
"printf('\t heat load is : %.2e Btu/hr \n',Q);\n",
"Q1=(Q*(1-0.12));\n",
"printf('\t sensible heat is : %.2e Btu/hr \n',Q1);\n",
"t2=(90)+(Q1/(28*60*50));\n",
"printf('\t final spray temperature is : %.0f F \n',t2);\n",
"w=(s*60*50);\n",
"printf('\t total spray : %.1e lb/hr \n',w);\n",
"m=(w/(2*4*12));\n",
"printf('\t m is : %.0f lb/(hr)*(ft^2) \n',m);\n",
"mu=1.84; // lb/(ft)*(hr)\n",
"Z=((m^0.3)*Do*Y*Z/(mu*0.125));\n",
"printf('\t Z is : %.2f \n',Z);\n",
"N=3; // assume 3 horizontal rows\n",
"ho=300*(N^0.05); // (ho/(N^0.05))=300, from fig 20.11\n",
"printf('\t ho is : %.0f Btu/(hr)*(ft^2)*(F) \n',ho);\n",
"printf('\t tube side coefficient \n');\n",
"printf('\t assuming even number of passes and tube side velocity about 8fps \n');\n",
"at=0.0775; // ft^2\n",
"Gt=(295*500/(at)); // mass velocity,lb/(hr)*(ft^2)\n",
"printf('\t mass velocity is : %.1e lb/(hr)*(ft^2) \n',Gt);\n",
"V=(Gt/(3600*62.5));\n",
"printf('\t velocity is : %.2f fps \n',V);\n",
"hi=2140; // Btu/(hr)*(ft^2)*(F), fig 25\n",
"ID=0.87; // ft\n",
"OD=1; // ft\n",
"hio=((hi)*(ID/OD)); // using eq.6.5\n",
"printf('\t Correct hio to the surface at the OD is : %.2e Btu/(hr)*(ft^2)*(F) \n',hio);\n",
"Uc=((ho*hio)/(ho+hio)); // from eq 6.38\n",
"printf('\t Uc is : %.0f Btu/(hr)*(ft^2)*(F) \n',Uc);\n",
"a=0.2618; // ft^2, table 11\n",
"A1=(2*3*25*12*a);\n",
"printf('\t total surface is : %.0f ft^2 \n',A1);\n",
"T1=143; // inlet hot fluid,F\n",
"T2=130; // outlet hot fluid,F\n",
"t1=90; // inlet cold fluid,F\n",
"t2=110; // outlet cold fluid,F\n",
"delt1=T2-t1; //F\n",
"delt2=T1-t2; // F\n",
"printf('\t delt1 is : %.0f F \n',delt1);\n",
"printf('\t delt2 is : %.0f F \n',delt2);\n",
"LMTD=((delt2-delt1)/((2.3)*(log10(delt2/delt1))));\n",
"printf('\t LMTD is :%.1f F \n',LMTD); // calculation mistake in book\n",
"R=0.65;\n",
"S=0.377;\n",
"FT=0.97; // fig 18\n",
"delt=(FT*LMTD);\n",
"printf('\t delt is : %.1f F \n',delt);\n",
"UD=(Q/(A1*(delt)));\n",
"printf('\t UD is : %.0f Btu/(hr)*(ft^2)*(F) \n',UD);\n",
"Rd=((Uc-UD)/((UD)*(Uc))); // (hr)*(ft^2)*(F)/Btu\n",
"printf('\t actual Rd is : %.4f (hr)*(ft^2)*(F)/Btu \n',Rd);\n",
"printf('\t The assumption of three horizontal rows is satisfactory, since a dirt factor of 0.004 was required \n');\n",
"// end\n",
"\n",
"\n",
""
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 20.6: Calculation_of_the_True_Temperature_Difference.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"printf('\t example 20.6 \n');\n",
"printf('\t approximate values are mentioned in the book \n');\n",
"T1=200; // inlet hot fluid,F\n",
"T2=100; // outlet hot fluid,F\n",
"t1=50; // inlet cold fluid,F\n",
"t2=100; // outlet cold fluid,F\n",
"R=((T1-T2)/(t2-t1));\n",
"printf('\t R is : %.0f \n',R);\n",
"V=((T1+T2-t1-t2)/(t2-t1))/(2);\n",
"printf('\t V is : %.1f \n',V);\n",
"u=120;\n",
"U=60;\n",
"F=((u*1)/(U*2));\n",
"printf('\t F is : %.0f \n',F);\n",
"E=1.1; // In Fig.20.18b for R = 2.0and F = l.O,the abscissa and ordinate intersect at E =1.10.\n",
"Z=(E/V);\n",
"printf('\t Z is : %.3f \n',Z);\n",
"deltD=0.783*V; // deltD/V=0.783, from fig 20.17\n",
"printf('\t deltD is : %.3f \n',deltD);\n",
"delt=(deltD*(t2-t1));\n",
"printf('\t delt is : %.1f \n',delt);\n",
"delt1=T2-t1; //F\n",
"delt2=T1-t2; // F\n",
"printf('\t delt1 is : %.0f F \n',delt1);\n",
"printf('\t delt2 is : %.0f F \n',delt2);\n",
"LMTD=((delt2-delt1)/((2.3)*(log10(delt2/delt1))));\n",
"printf('\t LMTD is :%.0f F \n',LMTD);\n",
"// end"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 20.7: calculation_of_Sand_Cooling_with_Negllgible_Resistance.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"printf('\t example 20.7 \n');\n",
"printf('\t approximate values are mentioned in the book \n');\n",
"T1=284; // inlet hot fluid,F\n",
"T2=104; // outlet hot fluid,F\n",
"t1=86; // inlet cold fluid,F\n",
"t2=104; // outlet cold fluid,F\n",
"W=1000; // lb/hr\n",
"k=0.15; // thermal conductivity\n",
"L=10;\n",
"Beta=((2*k)/(500*(2/12))); // hoi=500Btu/(hr)*(ft^2)*(F) for water\n",
"printf('\t beta is : %.4f \n',Beta);\n",
"printf('\t for sand \n');\n",
"C=0.2; // Btu/(lb)*(F)\n",
"Q=((W)*(C)*(T1-T2)); // Btu/hr\n",
"printf('\t total heat required for sand is : %.1e Btu/hr \n',Q);\n",
"c=1;\n",
"w=(Q/(t2-t1));\n",
"printf('\t w is : %.0e lb/hr \n',w);\n",
"R=((W*C)/(w*c));\n",
"printf('\t R is : %.1f \n',R);\n",
"S=((T2-T1)/(t1-T1));\n",
"printf('\t S is : %.2f \n',S);\n",
"W1=(8.33*(k*L)/C); // ((W1*C)/(k*L))=8.33 from fig 20.20b for Beta=0\n",
"printf('\t rate per tube is : %.1f lb/hr \n',W1);\n",
"N1=(W/W1);\n",
"printf('\t number of tubes : %.0f \n',N1);\n",
"printf('\t for air assume hoi=9 and Beta=0.2 \n');\n",
"c1=0.25;\n",
"w1=(Q/(c1*(t2-t1)));\n",
"printf('\t w1 is : %.0e lb/hr \n',w1);\n",
"W2=(5.23*(k*L)/C); // ((W1*C)/(k*L))=5.23 from fig 20.20b for Beta=0.2\n",
"printf('\t rate per tube is : %.0f lb/hr \n',W2);\n",
"N2=(W/W2);\n",
"printf('\t number of tubes : %.0f \n',N2);\n",
"// end\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
""
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 20.8_1: Immersion_Water_Heater.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"printf('\t example 20.8a \n');\n",
"printf('\t approximate values are mentioned in the book \n');\n",
"L=3; // ft\n",
"B=2; // ft\n",
"h=18/12; // ft , height of water present in tank\n",
"printf('\t unsteady state \n');\n",
"m=(L*B*h*62.5);\n",
"printf('\t Lb of water is : %.1f lb \n',m);\n",
"t1=50;\n",
"t2=150;\n",
"c=1;\n",
"Q=(m*c*(t2-t1))/(2*3412); // kwhr\n",
"printf('\t heat to be supplied : %.2f kwhr \n',Q);\n",
"printf('\t losses \n');\n",
"Q1=(L*B*260)/(1000); // from fig 20.25c\n",
"printf('\t from surface of water : %.2f kwhr \n',Q1);\n",
"Q2=(5.5*((2*B*2)+(2*L*B))/(1000)); // from fig 20.25c\n",
"printf('\t from sides of vessel : %.2f kwhr \n',Q2);\n",
"printf('\t losses from bottom are negigible \n');\n",
"Qt=(Q+Q1+Q2);\n",
"printf('\t total requirement : %.2f kwhr \n',Qt);\n",
"printf('\t steady state \n');\n",
"m1=8; // gal/hr\n",
"Qs=(m1*8.33*c*(t2-t1))/(3412); // kwhr\n",
"printf('\t heat to be supplied : %.2f kwhr \n',Qs);\n",
"Qts=(Qs+Q1+Q2);\n",
"printf('\t total requirement : %.2f kwhr \n',Qts);\n",
"// end\n",
""
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 20.8_2: Strip_Heater_for_Air_Heating.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"printf('\t example 20.8b \n');\n",
"printf('\t approximate values are mentioned in the book \n');\n",
"m=100; // lb\n",
"t1=70;\n",
"t2=370; \n",
"L=4;\n",
"B=3;\n",
"n=4; // number of air changers\n",
"c1=0.12\n",
"Q1=(m*c1*(t2-t1));\n",
"printf('\t heat to steel charge : %.1e Btu \n',Q1);\n",
"c2=0.25\n",
"Q2=(n*L*B*2*0.075*c2*(t2-t1));\n",
"printf('\t heat to air : %.1e Btu \n',Q2);\n",
"printf('\t From Fig. 20.25a for 52ft^2 of oven outside·surface and a temperature rise of 300F the loss is 5kw for 1 in.thick insulations.For 2 in.thick insulation the loss is 2.5kw \n');\n",
"Qt=((Q1+Q2)/(3412))+(2.5);\n",
"printf('\t total requirement : %.2f kw \n',Qt);\n",
"// end"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 20.8_3: Finned_strip_Heater.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"printf('\t example 20.8c \n');\n",
"printf('\t approximate values are mentioned in the book \n');\n",
"m=270; // cfm\n",
"t1=70;\n",
"t2=120; \n",
"L=1.5; // ft\n",
"B=1.5; // ft\n",
"c=0.25\n",
"row=0.075; // lb/ft^3\n",
"Q=(m*row*60*c*(t2-t1));\n",
"printf('\t heat : %.2e Btu \n',Q);\n",
"V=(m/(L*B*60)); // fps\n",
"printf('\t velocity is : %.0f fps \n',V);\n",
"printf('\t Refer to Fig.20.22a.The air is capable of removing 33watts/in which is the maximum dissipation which may be expected. Any group of heaters providing 5 kw which do not require a dissipation of more than 33 w/in. and which will fit into the duct will be satisfactory \n');\n",
"printf('\t Thus in Table 20.3 elements of 350 watts with a total length each of 18 in. each are satisfactory \n');\n",
"// end"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 20.8_4: Clamp_on_Plastic_Heating.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"printf('\t example 20.8d \n');\n",
"printf('\t approximate values are mentioned in the book \n');\n",
"t1=70;\n",
"t2=300; \n",
"L=26; // in\n",
"B=12; // in\n",
"H=1; // in\n",
"c1=0.13\n",
"// specific gravity of cast iron is 7.2\n",
"printf('\t unsteady state \n');\n",
"m=(L*B*H*62.5*7.2/1728); // lb\n",
"printf('\t weight of plate : %.0f lb \n',m);\n",
"Q1=(m*c1*(t2-t1));\n",
"printf('\t heat : %.1e Btu \n',Q1);\n",
"printf('\t From Figure 20.25b for a black body the radiation is 1.5w/in^2.The radiation from the top is actually 110 per cent of this value, and from the bottom of the plate it is 55 per cent for an average of 82.5 per cent is taken \n');\n",
"Q2=(2*26*12*1.5*0.825/1000); // ke\n",
"printf('\t radiation loss : %.1f kw \n',Q2);\n",
"Qt=((Q1)/(3412))+(Q2);\n",
"printf('\t total requirement : %.1f kw \n',Qt);\n",
"printf('\t staedy state \n');\n",
"m2=70;\n",
"c2=0.22;\n",
"Qs=(m2*c2*(t2-t1));\n",
"printf('\t heat : %.2e Btu \n',Qs);\n",
"Ql=0.8; // kw\n",
"Qts=((Qs)/(3412))+(Ql);\n",
"printf('\t total requirement : %.2f kw \n',Qts);\n",
"printf('\t The steady state is controlling.The requirements are satisfied, by four 24-in. strip heaters, but the sheath temperature must now be checked. Since the temperature drop per unit flux density is 14 to 19F, assume an average of 16.5°F. For clamp-on strips 24 in. long the watts per square inch deliverable are 16 \n');\n",
"delt=(16*16.5);\n",
"printf('\t delt is : %.0f F \n',delt);\n",
"printf('\t The sheath temperature is then 300 + 264 = 564°F, which is satisfactory for steel sheathed elements with a 750F maximum. \n');\n",
"// end"
   ]
   }
],
"metadata": {
		  "kernelspec": {
		   "display_name": "Scilab",
		   "language": "scilab",
		   "name": "scilab"
		  },
		  "language_info": {
		   "file_extension": ".sce",
		   "help_links": [
			{
			 "text": "MetaKernel Magics",
			 "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
			}
		   ],
		   "mimetype": "text/x-octave",
		   "name": "scilab",
		   "version": "0.7.1"
		  }
		 },
		 "nbformat": 4,
		 "nbformat_minor": 0
}