1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 17: Cooling Towers"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 17.1: Calculation_of_the_Enthalpy_of_Saturated_Air.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"printf('\t example 17.1 \n');\n",
"pw=0.4298; // psia, at 75F, table 7\n",
"pt=14.696; // psia\n",
"t=75;\n",
"Mw=18;\n",
"Ma=29;\n",
"X=(pw/(pt-pw))*(Mw/Ma);\n",
"printf('\t humidity is : %.4f lb water/lb air \n',X);\n",
"H=(X*t)+(1051.5*X)+(0.24*t); // eq 17.54\n",
"printf('\t enthalpy at 75F is : %.1f Btu/lb dry air \n',H);\n",
"// end"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 17.2: Calculation_of_the_Number_of_Diffusion_Units.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"printf('\t example 17.2 \n');\n",
"printf('\t approximate values are mentioned in the book \n');\n",
"printf('\t by numerical integration \n');\n",
"T1=85;\n",
"T2=120;\n",
"A=576; // ground area, from fig 17.12\n",
"L=1500*(500/576);\n",
"G=1400;\n",
"R=(L/G);\n",
"printf('\t R is : %.2f \n',R);\n",
"H1=39.1; // fig 17.12\n",
"H2=H1+(R*(T2-T1));\n",
"printf('\t H2 is : %.1f Btu \n',H2);\n",
"// The area between the saturation line and the operating line represents the potential for heat transfer\n",
"// at T=85F\n",
"Hs=50; // fig 17.12\n",
"d1=(Hs-H1);\n",
"printf('\t difference is : %.1f \n',d1);\n",
"//at t=90\n",
"Hs=56.7; // fig 17.12\n",
"H=43.7; // fig 17.12\n",
"d2=Hs-H;\n",
"printf('\t difference is : %.1f \n',d2);\n",
"d=(d1+d2)/(2);\n",
"printf('\t average of difference is : %.1f \n',d);\n",
"dT=5; // F\n",
"nd1=(dT/d);\n",
"printf('\t nd1 is : %.3f \n',nd1);\n",
"// similarly calculating nd at each temperature and adding them will give you total nd value\n",
"nd=1.70;\n",
"printf('\t number of diffusing units : %.2f \n',nd);\n",
"printf('\t log mean enthalpy difference \n');\n",
"dt=49.9; // diff. of enthalpies at top of the tower, from table in solution\n",
"db=10.9; // diff of enthalpies at bottom of the tower,from table in solution\n",
"LME=(dt-db)/(2.3*log10(dt/db));\n",
"printf('\t log mean of enthalpy : %.1f Btu/lb \n',LME);\n",
"nd=(T2-T1)/(LME);\n",
"printf('\t number of diffusing units are : %.2f \n',nd);\n",
"// The error is naturally larger the greater the range\n",
"//end"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 17.3: Calculation_of_the_Required_Height_of_Fill.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"printf('\t example 17.3 \n');\n",
"printf('\t approximate values are mentioned in the book \n');\n",
"// Since the loading is based on 1 ft2 of ground area\n",
"nd=1.7;\n",
"L=1302;\n",
"Kxa=115;\n",
"Z=(nd*L)/(Kxa);\n",
"printf('\t Z is : %.1f ft \n',Z);\n",
"HDU=(Z/nd);\n",
"printf('\t height of diffusion unit : %.1ff ft \n',HDU);\n",
"// end"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 17.4: Determination_of_a_Cooling_tower_Guarantee.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"printf('\t example 17.4 \n');\n",
"printf('\t approximate values are mentioned in the book \n');\n",
"// The area between the saturation line and the operating line represents the potential for heat transfer\n",
"// at T=79.3F\n",
"Hs=43.4; // fig 17.12\n",
"H=30.4; // fig 17.12\n",
"d1=(Hs-H);\n",
"printf('\t difference is : %.1f \n',d1);\n",
"//at t=85\n",
"Hs=50; // fig 17.12\n",
"H=35.7; // fig 17.12\n",
"d2=Hs-H;\n",
"printf('\t difference is : %.1f \n',d2);\n",
"d=(d1+d2)/(2);\n",
"printf('\t average of difference is : %.2f \n',d);\n",
"dT=(85-79.3); // F\n",
"nd1=(dT/d);\n",
"printf('\t nd1 is : %.3f \n',nd1);\n",
"// similarly calculating nd at each temperature and adding them will give you total nd value\n",
"nd=1.72;\n",
"printf('\t number of diffusing units : %.2f \n',nd);\n",
"// end"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 17.5: The_Recalculation_of_Cooling_tower_Performance.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"printf('\t example 17.5 \n');\n",
"printf('\t approximate values are mentioned in the book \n');\n",
"T1=85;\n",
"T2=120;\n",
"R=0.93; // R=(L/G), for 1500 gpm\n",
"printf('\t for 120percent of design \n');\n",
"R1=1.2*R;\n",
"printf('\t R is : %.3f \n',R1);\n",
"H1=39.1; // at 87.2F\n",
"H2=H1+(R1*(T2-T1)); \n",
"printf('\t H2 is : %.1f Btu \n',H2);\n",
"// The area between the saturation line and the operating line represents the potential for heat transfer\n",
"// at T=87.2F\n",
"Hs=53.1; // from table in the solution\n",
"d1=(Hs-H1);\n",
"printf('\t difference is : %.1f \n',d1);\n",
"//at t=90\n",
"Hs=56.7; // fig 17.12\n",
"H=42; // fig 17.12\n",
"d2=Hs-H;\n",
"printf('\t difference is : %.1f \n',d2);\n",
"d=(d1+d2)/(2);\n",
"printf('\t average of difference is : %.1f \n',d);\n",
"dT=(90-87.2); // F\n",
"nd1=(dT/d);\n",
"printf('\t nd1 is : %.3f \n',nd1);\n",
"// similarly calculating nd at each temperature and adding them will give you total nd value\n",
"nd=1.53;\n",
"printf('\t number of diffusing units : %.2f \n',nd);\n",
"printf('\t for 80 percent of design \n');\n",
"R2=0.8*R;\n",
"printf('\t R is : %.3f \n',R2);\n",
"H1=39.1; // at 87.2F\n",
"H2=H1+(R2*(T2-T1)); \n",
"printf('\t H2 is : %.0f Btu \n',H2);\n",
"// The area between the saturation line and the operating line represents the potential for heat transfer\n",
"// at T=82.5F\n",
"Hs=47.2; // from table in the solution\n",
"d1=(Hs-H1);\n",
"printf('\t difference is : %.1f \n',d1);\n",
"//at t=85\n",
"Hs=50; // fig 17.12\n",
"H=40.8; // fig 17.12\n",
"d2=Hs-H;\n",
"printf('\t difference is : %.1f \n',d2);\n",
"d=(d1+d2)/(2);\n",
"printf('\t average of difference is : %.1f \n',d);\n",
"dT=(85-82.5); // F\n",
"nd1=(dT/d);\n",
"printf('\t nd1 is : %.3f \n',nd1);\n",
"// similarly calculating nd at each temperature and adding them will give you total nd value\n",
"nd=1.92;\n",
"printf('\t number of diffusing units : %.2f \n',nd);\n",
"X=[1.115 0.93 0.74];\n",
"Y=[1.53 1.70 1.92];\n",
"plot2d(X,Y,style=3,rect=[0.7,1.4,1.3,2]);\n",
"xtitle('KxaV/L vs L/G','L/G','nd');\n",
"printf('\t trial 1 \n');\n",
"R3=1.1;\n",
"printf('\t R is : %.3f \n',R3);\n",
"H1=34.5; // at 87.2F\n",
"H2=H1+(R3*(T2-T1)); \n",
"printf('\t H2 is : %.0f Btu \n',H2);\n",
"// The area between the saturation line and the operating line represents the potential for heat transfer\n",
"// at T=85F\n",
"Hs=50; // from table in the solution\n",
"d1=(Hs-H1);\n",
"printf('\t difference is : %.1f \n',d1);\n",
"//at t=90\n",
"Hs=56.7; // fig 17.12\n",
"H=40; // fig 17.12\n",
"d2=Hs-H;\n",
"printf('\t difference is : %.1f \n',d2);\n",
"d=(d1+d2)/(2);\n",
"printf('\t average of difference is : %.1f \n',d);\n",
"dT=(90-85); // F\n",
"nd1=(dT/d);\n",
"printf('\t nd1 is : %.3f \n',nd1);\n",
"// similarly calculating nd at each temperature and adding them will give you total nd value\n",
"nd=1.48;\n",
"printf('\t number of diffusing units : %.2f \n',nd);\n",
"R3=1.19; // from fig 17.14\n",
"printf('\t L/G is : %.2f \n',R3);\n",
"printf('\t trial 2 \n');\n",
"R4=1.2;\n",
"printf('\t R4 is : %.3f \n',R4);\n",
"H1=34.5; // at 87.2F\n",
"H2=H1+(R4*(T2-T1)); \n",
"printf('\t H2 is : %.1f Btu \n',H2);\n",
"// The area between the saturation line and the operating line represents the potential for heat transfer\n",
"// at T=85F\n",
"Hs=50; // from table in the solution\n",
"d1=(Hs-H1);\n",
"printf('\t difference is : %.1f \n',d1);\n",
"//at t=90\n",
"Hs=56.7; // fig 17.12\n",
"H=40.5; // fig 17.12\n",
"d2=Hs-H;\n",
"printf('\t difference is : %.1f \n',d2);\n",
"d=(d1+d2)/(2);\n",
"printf('\t average of difference is : %.1f \n',d);\n",
"dT=(90-85); // F\n",
"nd1=(dT/d);\n",
"printf('\t nd1 is : %.3f \n',nd1);\n",
"// similarly calculating nd at each temperature and adding them will give you total nd value\n",
"nd=1.56;\n",
"printf('\t number of diffusing units : %.2f \n',nd);\n",
"R3=1.08; // from fig 17.14\n",
"printf('\t L/G is : %.2f \n',R3);\n",
"// end"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 17.6: Calculation_of_a_Direct_contact_Gas_Cooler.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"printf('\t example 17.6 \n');\n",
"printf('\t approximate values are mentioned in the book \n');\n",
"// basis 1ft^2 ground area\n",
"//Assumption: 20 per cent of the initial vapor content of the gas enters the water body\n",
"X1=(1.69/(14.7-1.69))*(18/29);\n",
"printf('\t X1 : %.4f lb/lb \n',X1);\n",
"G=1500;\n",
"w1=G*X1;\n",
"printf('\t total water in inlet gas : %.2f lb/hr \n',w1);\n",
"// The inlet gas is at 300F and a 120F dew point. Use 0.25 Btu/(lb)(°F) for the specific heat of nitrogen\n",
"H1=(0.0807*120)+(0.0807*1025.8)+(0.45*0.0807*(300-120))+(0.25*300); // eq 17.55\n",
"printf('\t H1 : %.0f Btu/lb dry air \n',H1);\n",
"X2=(w1*(1-.2)/G);\n",
"printf('\t outlet gas humidity : %.5f lb/lb \n',X2);\n",
"pw=(X2*29*14.7/18)/(1+(X2*29/18));\n",
"printf('\t pw : %.3f psia \n',pw);\n",
"Tw=112.9; // F, from table 7 for above pw\n",
"// The outlet gas has a temperature of 200°F and a 112.9°F dew point\n",
"H2=(X2*Tw)+(X2*1029.8)+(X2*0.45*(200-Tw))+(0.25*200); // eq 17.55\n",
"printf('\t H2 : %.1f Btu/lb dry air \n',H2);\n",
"q=G*(H1-H2);\n",
"printf('\t total heat load : %.2e Btu/hr \n',q);\n",
"w2=q/(120-85);\n",
"printf('\t water loading : %.2e lb/hr \n',w2);\n",
"printf('\t interval 1 \n');\n",
"// (Kxa*delV/L)= 0 t0 0.05\n",
"nd=0.05; // nd=Kxa*V/L\n",
"Le=0.93; // fig 17.4 at 300F\n",
"C=(0.25)+(0.45*X1);\n",
"printf('\t C : %.3f Btu/(lb)*(F) \n',C);\n",
"haV=(nd*w2*Le*C);\n",
"printf('\t haV : %.1f Btu/(hr)*(F) \n',haV);\n",
"qc=(haV*(300-120));\n",
"printf('\t qc : %.2e Btu/hr \n',qc);\n",
"delT=(qc/(C*G));\n",
"printf('\t delT : %.1f F \n',delT);\n",
"T1=(300-delT);\n",
"printf('\t T(0.05) : %.1f F \n',T1);\n",
"delt=(qc/w2);\n",
"printf('\t delt : %.2f F \n',delt);\n",
"t1=(120-delt);\n",
"printf('\t t(0.05) : %.1f F \n',t1);\n",
"printf('\t interval 2 \n');\n",
"// (Kxa*delV/L)= 0.05 to 0.15\n",
"nd1=0.1;\n",
"haV1=(nd1*w2*Le*C);\n",
"printf('\t haV1 : %.1f Btu/(hr)*(F) \n',haV1);\n",
"qc1=(haV1*(T1-t1));\n",
"printf('\t qc1 : %.1e Btu/hr \n',qc1);\n",
"delT1=(qc1/(C*G));\n",
"printf('\t delT1 : %.1f F \n',delT1);\n",
"T2=(T1-delT1);\n",
"printf('\t T(0.15) : %.2f F \n',T2);\n",
"X3=0.0748; // at 117.6F\n",
"w3=(nd1*w2*(0.0807-X3));\n",
"printf('\t water diffused during interval : %.3f lb/hr \n',w3);\n",
"w4=(w1-w3);\n",
"printf('\t water remaining : %.2f lb/hr \n',w4);\n",
"l1=1027; // Btu/lb, l1= lamda at 117.6F\n",
"qd=(w3*l1);\n",
"printf('\t qd : %.0f Btu/hr \n',qd);\n",
"q1=(qd+qc1);\n",
"printf('\t q1 : %.0f Btu/hr \n',q1);\n",
"delt1=(q1/w2);\n",
"printf('\t delt1 : %.2f F \n',delt1);\n",
"t2=(t1-delt1);\n",
"printf('\t t(0.15) : %.1f F \n',t2);\n",
"X4=0.0640; // at 112.5\n",
"X5=(w4/G);\n",
"printf('\t X(112.5F) : %.4f lb/lb \n',X5);\n",
"printf('\t interval 3 \n');\n",
"// (Kxa*delV/L)= 0.15 to 0.25\n",
"nd1=0.1;\n",
"haV1=(nd1*w2*Le*C);\n",
"printf('\t haV1 : %.1f Btu/(hr)*(F) \n',haV1);\n",
"qc2=(haV1*(T2-t2));\n",
"printf('\t qc2 : %.2e Btu/hr \n',qc2);\n",
"delT2=(qc2/(C*G));\n",
"printf('\t delT2 : %.1f F \n',delT2);\n",
"T3=(T2-delT2);\n",
"printf('\t T(0.25) : %.1f F \n',T3);\n",
"w5=(nd1*w2*(X5-X4));\n",
"printf('\t water diffused during interval : %.3f lb/hr \n',w5);\n",
"w6=(w4-w5);\n",
"printf('\t water remaining : %.2f lb/hr \n',w6);\n",
"l2=1030; // Btu/lb, l1= lamda at 112.5F\n",
"qd1=(w5*l2);\n",
"printf('\t qd1 : %.2e Btu/hr \n',qd1);\n",
"q2=(qd1+qc2);\n",
"printf('\t q2 : %.3e Btu/hr \n',q2);\n",
"delt2=(q2/w2);\n",
"printf('\t delt2 : %.2f F \n',delt2);\n",
"t3=(t2-delt2);\n",
"printf('\t t(0.25) : %.1f F \n',t3);\n",
"X6=0.0533; // at 106.5\n",
"X7=(w6/G);\n",
"printf('\t X(106.5F) : %.4f lb/lb \n',X7);\n",
"// The calculations of the remaining intervals until a. gas temperature of 200°F is reached are shown in Fig. 17.17\n",
"w7=21.92; // total water diffused from table in solution\n",
"d=(w7/w1)*100;\n",
"printf('\t calculated diffusion : %.0f \n',d);\n",
"printf('\t Using some standard low-pressure-drop data \n');\n",
"// For G = 1500, extrapolate to L = 2040 on logarithmic coordinates. Kxa = 510.\n",
"ndt=.54; // from 1st table in solution\n",
"Kxa=510; // from 2nd table in solution\n",
"Z=(ndt*w2/Kxa);\n",
"printf('\t tower height : %.2f ft \n',Z);\n",
"A=(50000/G);\n",
"printf('\t cross section : %.1f ft^2 \n',A);\n",
"// end\n",
"\n",
"\n",
""
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 17.7: Approximate_Calculation_of_a_Gas_Cooler.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"printf('\t example 17.7 \n');\n",
"printf('\t approximate values are mentioned in the book \n');\n",
"C=0.28; // assumption\n",
"w=50000; // lb/hr\n",
"G=1500;\n",
"Qs=(w*C*(500-200));\n",
"Qd=(w/G)*(22685); // qd=22685, from previous prblm\n",
"printf('\t sensible heat : %.1e Btu/hr \n',Qs);\n",
"printf('\t approximate diffusion : %.2e Btu/hr \n',Qd);\n",
"Q=(Qs+Qd);\n",
"printf('\t total heat : %.3e Btu/hr \n',Q);\n",
"// an allowance as high as 30 per cent of the sensible load can be made and the excess water compensated for by throttling when the tower is in operation\n",
"w1=(Q/(120-85));\n",
"printf('\t total water quantity : %.2e lb/hr \n',w1);\n",
"// If the maximum liquid loading is taken as 2040 lb/(hr)(ft'!), the required tower cross section\n",
"A=(w1/2040);\n",
"printf('\t tower cross section : %.1f ft^2 \n',A);\n",
"w3=(w/A);\n",
"printf('\t new gas rate : %.0f lb/(hr)(ft^2) \n',w3);\n",
"// The two terminal temperature differences are (200 - 85) and (500 - 120).\n",
"LMTD=((500-120)-(200-85))/(log((500-120)/(200-85)));\n",
"printf('\t LMTD : %.0f \n',LMTD);\n",
"dt=35;\n",
"N=(dt/LMTD); // eq 17.88\n",
"printf('\t haV/L : %.2f \n',N);\n",
"Le=0.93;\n",
"nd=(N/(C*Le));\n",
"printf('\t number diffusion units : %.2f \n',nd);\n",
"// By extrapolation for G = 718 and L = 2040,Kxa=215\n",
"L=2040;\n",
"Kxa=215;\n",
"Z=(nd*L/Kxa); // calculation mistake\n",
"printf('\t height of tower : %.1f ft \n',Z);\n",
"di=(A)^(1/2);\n",
"printf(' ground dimensions : %.1f ft \n',di);\n",
"// ground dimensions are 5.8*8.3*8.3 ft\n",
"// end"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Scilab",
"language": "scilab",
"name": "scilab"
},
"language_info": {
"file_extension": ".sce",
"help_links": [
{
"text": "MetaKernel Magics",
"url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
}
],
"mimetype": "text/x-octave",
"name": "scilab",
"version": "0.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|