summaryrefslogtreecommitdiff
path: root/Principles_Of_Heat_Transfer_by_F_Kreith/8-Heat_Exchangers.ipynb
blob: 8dc46a761ef1429190530684c8af581b1141cb39 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
{
"cells": [
 {
		   "cell_type": "markdown",
	   "metadata": {},
	   "source": [
       "# Chapter 8: Heat Exchangers"
	   ]
	},
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 8.1: Heat_Transfer_Surface_Area_Calculations.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"\n",
"\n",
"// Display mode\n",
"mode(0);\n",
"\n",
"// Display warning for floating point exception\n",
"ieee(1);\n",
"\n",
"clc;\n",
"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 8 Example # 8.1 ')\n",
"\n",
"//Outer dia in m\n",
"d = 0.0254;\n",
"//mass flow rate of hot fluid in kg/s\n",
"mh = 6.93;\n",
"//Specific heat of hot fluid n J/kgK\n",
"ch = 3810;\n",
"//Inlet temperature of hot fluid in degree C\n",
"Thin = 65.6;\n",
"//Outlet temperature of hot fluid in degree C\n",
"Thout = 39.4;\n",
"//mass flow rate of cold fluid in kg/s\n",
"mc = 6.3;\n",
"//Specific heat of cold fluid n J/kgK\n",
"cc = 4187;\n",
"//Inlet temperature of cold fluid in degree C\n",
"Tcin = 10;\n",
"//Overall heat transfer coefficient in W/m2K\n",
"U = 568;\n",
"\n",
"//Using energy balance, outlet temp. of cold fluid in degree C\n",
"Tcout = Tcin+((mh*ch)*(Thin-Thout))/(mc*cc);\n",
"\n",
"//The rate of heat flow in W\n",
"q = (mh*ch)*(Thin-Thout);\n",
"\n",
"disp('Parallel-flow tube and shell')\n",
"//From Eq. (8.18) the LMTD for parallel flow\n",
"//Temperature difference at inlet in degree K\n",
"deltaTa = Thin-Tcin;\n",
"//Temperature difference at outlet in degree K\n",
"deltaTb = Thout-Tcout;\n",
"//LMTD in degree K\n",
"LMTD = (deltaTa-deltaTb)/log(deltaTa/deltaTb);\n",
"\n",
"//From Eq. (8.16) \n",
"disp('Heat transfer surface area in m2 is')\n",
"//Heat transfer surface area in m2\n",
"A = q/(U*LMTD)\n",
"\n",
"disp('Counterflow tube and shell')\n",
"//LMTD in degree K\n",
"LMTD = 29.4;\n",
"\n",
"disp('Heat transfer surface area in m2 is')\n",
"//Heat transfer surface area in m2\n",
"A = q/(U*LMTD)\n",
"\n",
"A1 = A;//To be used further as a copy of this area\n",
"\n",
"disp('Counterflow exchanger with 2 shell passes and 72 tube passes')\n",
"\n",
"//Correction factor found from Fig. 8.15 to the mean temperature for counterflow\n",
"P = (Tcout-Tcin)/(Thin-Tcin);\n",
"//Heat capacity ratio\n",
"Z = (mh*ch)/(mc*cc);\n",
"//From the chart of Fig. 8.15, F= 0.97\n",
"F = 0.97; //F-Factor\n",
"disp('Heat transfer surface area in m2 is')\n",
"//Heat transfer surface area in m2 is\n",
"A = A1/F\n",
"\n",
"disp('Cross-flow, with one tube pass and one shell pass, shell-side fluid mixed')\n",
"//Using same procedure, we get from charts\n",
"F = 0.88; //F-Factor\n",
"disp('Heat transfer surface area in m2 is')\n",
"//Heat transfer surface area in m2 is\n",
"A = A1/F"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 8.2: Oil_Water_Heat_Exchanger_Problem.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"\n",
"\n",
"// Display mode\n",
"mode(0);\n",
"\n",
"// Display warning for floating point exception\n",
"ieee(1);\n",
"\n",
"clc;\n",
"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 8 Example # 8.2 ')\n",
"\n",
"//mass flow rate of hot fluid in kg/s\n",
"mh = 1;\n",
"//Specific heat of hot fluid n J/kgK\n",
"ch = 2100;\n",
"//Inlet temperature of hot fluid in degree C\n",
"Thin = 340;\n",
"//Outlet temperature of hot fluid in degree C\n",
"Thout = 310;\n",
"//Specific heat of cold fluid n J/kgK\n",
"cc = 4187;\n",
"//Inlet temperature of cold fluid in degree C\n",
"Tcin = 290;\n",
"//Outlet temperature of cold fluid in degree C\n",
"Tcout = 300;\n",
"\n",
"//The heat capacity rate of the water in J/kgK is, from Eq. (8.14)\n",
"cc = ch*((Thin-Thout)/(Tcout-Tcin));\n",
"\n",
"//Temperature ratio P and Z is, from Eq. (8.20)\n",
"P = (Thin-Thout)/(Thin-Tcin); // P Temperature ratio\n",
"Z = (Tcout-Tcin)/(Thin-Thout); // Z Temperature ratio\n",
"\n",
"//From Fig. 8.14, F0.94 and the mean temperature difference in degree K is\n",
"//F Value\n",
"F = 0.94;\n",
"//Temperature difference at inlet in degree K\n",
"deltaTa = Thin-Tcout;\n",
"//Temperature difference at outlet in degree K\n",
"deltaTb = Thout-Tcin;\n",
"//LMTD in degree K\n",
"LMTD = (deltaTa-deltaTb)/log(deltaTa/deltaTb);\n",
"//Mean temperature difference in degree K\n",
"deltaTmean = F*LMTD;\n",
"\n",
"//From Eq. (8.17) the overall conductance in W/K is\n",
"UA = ((mh*ch)*(Thin-Thout))/deltaTmean;\n",
"\n",
"//With reference to the new conditions and Eq. 6.62\n",
"//Conductance in W/K\n",
"UA = UA*((3/4)^0.8);\n",
"//Number of transfer units(NTU) value\n",
"NTU = UA/(((3/4)*mh)*ch);\n",
"//Heat capacity ratio\n",
"K = (((3/4)*mh)*ch)/cc;\n",
"\n",
"//From Fig. 8.20 the effectiveness is equal to 0.61\n",
"//Effectiveness\n",
"E = 0.61;\n",
"//New inlet temperaturre of oil in degree K\n",
"Toilin = 370;\n",
"//From eq. 8.22a\n",
"disp('Outlet temperature of oil in degree K')\n",
"//Outlet temperature of oil in degree K\n",
"Toilout = Toilin-E*(Toilin-Tcin)"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 8.3: Heating_of_Air_From_Gases.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"\n",
"\n",
"// Display mode\n",
"mode(0);\n",
"\n",
"// Display warning for floating point exception\n",
"ieee(1);\n",
"\n",
"clc;\n",
"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 8 Example # 8.3 ')\n",
"\n",
"//Airflow rate in kg/s\n",
"mair = 0.75;\n",
"//Inlet temperature of air in degree K\n",
"Tairin = 290;\n",
"//Hot gas flow rate in kg/s\n",
"mgas = 0.6;\n",
"//Inlet temperature of hot gases in degree K\n",
"Tgasin = 1150;\n",
"//wetted perimeter on air side in m\n",
"Pa = 0.703;\n",
"//wetted perimeter on gas side in m\n",
"Pg = 0.416;\n",
"//cross-sectional area of gas passage (per passage) in m2\n",
"Ag = 0.0016;\n",
"//cross-sectional area of air passage (per passage) in m2\n",
"Aa = 0.002275;\n",
"//heat transfer surface area in m2\n",
"A = 2.52;\n",
"\n",
"//Given that unit is of the cross-flow type, with both fluids unmixed.\n",
"\n",
"//length of air duct in m\n",
"La = 0.178;\n",
"//hydraulic diameter of air duct in m\n",
"Dha = (4*Aa)/Pa;\n",
"//length of gas duct in m\n",
"Lg = 0.343;\n",
"//hydraulic diameter of gas duct in m\n",
"Dhg = (4*Ag)/Pg;\n",
"\n",
"//The heat transfer coefficients can be evaluated from Eq. (6.63) for flow\n",
"//in ducts.\n",
"//Heat transfer coefficient for air in W/m2K\n",
"ha = La/Dha;\n",
"//Heat transfer coefficient for gas in W/m2K\n",
"hg = Lg/Dhg;\n",
"\n",
"//Assuming the average air-side bulk temperature to be 573 K and the average\n",
"//gas-side bulk temperature to be 973 K, the properties at those temperatures are, from Appendix 2, Table 28.\n",
"\n",
"//Specific heat of air in J/kgK\n",
"cair = 1047;\n",
"//Thermal conductivity of air in W/mK\n",
"kair = 0.0429;\n",
"//Dynamic viscosity of air in Ns/m2\n",
"muair = 0.0000293;\n",
"//Prandtl number of air\n",
"Prair = 0.71;\n",
"\n",
"//Specific heat of hot gas in J/kgK\n",
"cgas = 1101;\n",
"//Thermal conductivity of hot gas in W/mK\n",
"kgas = 0.0623;\n",
"//Dynamic viscosity of hot gas in Ns/m2\n",
"mugas = 0.00004085;\n",
"//Prandtl number of hot gas\n",
"Prgas = 0.73;\n",
"\n",
"//The mass flow rates per unit area in kg/m2s\n",
"//mass flow rate of air in kg/m2s\n",
"mdotair = mair/(19*Aa);\n",
"//mass flow rate of gas in kg/m2s\n",
"mdotgas = mgas/(18*Ag);\n",
"\n",
"//The Reynolds numbers are\n",
"//Reynolds number for air\n",
"Reair = (mdotair*Dha)/muair;\n",
"//Reynolds number for gas\n",
"Regas = (mdotgas*Dhg)/mugas;\n",
"\n",
"//Using Eq. (6.63), the average heat transfer coefficients in W/m2K\n",
"hair = (((0.023*kair)*(Reair^0.8))*(Prair^0.4))/Dha;\n",
"\n",
"//Since La/DHa=13.8, we must correct this heat transfer coefficient for\n",
"//entrance effects, per Eq. (6.68). The correction factor is 1.377.\n",
"//Corrected heat transfer coefficient of air in W/m2K\n",
"hair = 1.377*hair;\n",
"\n",
"//Similarly for hot gas\n",
"//Heat transfer coefficient in W/m2K\n",
"hgas = (((0.023*kgas)*(Regas^0.8))*(Prgas^0.4))/Dhg;\n",
"//Correction factor=1.27;\n",
"//Corrected heat transfer coefficient of gas in W/m2K\n",
"hgas = 1.27*hgas;\n",
"\n",
"//Overall conductance in W/K\n",
"UA = 1/(1/(hair*A)+1/(hgas*A));\n",
"\n",
"//The number of transfer units, based on the gas, which has the smaller heat capacity rate\n",
"NTU = UA/(mgas*cgas);\n",
"\n",
"//The heat capacity-rate ratio\n",
"Z = (mgas*cgas)/(mair*cair);\n",
"\n",
"//and from Fig. 8.21, the effectiveness is approximately 0.13.\n",
"//Effectiveness\n",
"E = 0.13;\n",
"\n",
"disp('Gas outlet temperature in degree K')\n",
"//Gas outlet temperature in degree K\n",
"Tgasout = Tgasin-E*(Tgasin-Tairin)\n",
"\n",
"disp('Air outlet temperature in degree K')\n",
"//Gas outlet temperature in degree K\n",
"Tairout = Tairin+(Z*E)*(Tgasin-Tairin)"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 8.4: Heating_Seawater_From_Condenser.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"\n",
"\n",
"// Display mode\n",
"mode(0);\n",
"\n",
"// Display warning for floating point exception\n",
"ieee(1);\n",
"\n",
"clc;\n",
"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 8 Example # 8.4 ')\n",
"\n",
"//Pressure of steam in inches of Hg\n",
"P = 4;\n",
"//At this pressure, temperture of condensing steam in degree F\n",
"Thin = 125.4;\n",
"\n",
"//Flow rate of seawater in lb/s\n",
"mw = 25000;\n",
"//Specific heat of water in Btu/lb F\n",
"c = 0.95;\n",
"//Inlet and outlet temperature of seawater in degree F\n",
"Tcin = 60;\n",
"Tcout = 110;\n",
"//Heat transfer coefficient of steam in Btu/h ft2 F\n",
"hsteam = 600;\n",
"//Heat transfer coefficient of water in Btu/h ft2 F\n",
"hwater = 300;\n",
"//Outer diameter in inches\n",
"OD = 1.125;\n",
"//Inner diameters in inches\n",
"ID = 0.995;\n",
"\n",
"//required effectiveness of the exchanger\n",
"E = (Tcout-Tcin)/(Thin-Tcin);\n",
"\n",
"//For a condenser, Cmin/Cmax=0, and from Fig. 8.20, NTU =1.4.\n",
"NTU = 1.4;\n",
"\n",
"//The fouling factors from Table 8.2 are 0.0005 h ft2°F/Btu for both sides of the tubes.\n",
"//F-Factor\n",
"F = 0.0005;\n",
"\n",
"//The overall design heat-transfer coefficient in Btu/h ft2 F per unit outside area of tube is, from Eq. (8.6)\n",
"U = 1/(1/hsteam+F+(OD/((2*12)*60))*log(OD/ID)+(F*OD)/ID+OD/(hwater*ID));\n",
"\n",
"//The total area A is 20*pi*D*L, and since U*A/Cmin=1.4\n",
"\n",
"disp('The length of the tube in ft is')\n",
"//The length of the tube in ft\n",
"L = (((1.4*mw)*c)*12)/(((Tcin*%pi)*OD)*U)"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 8.5: Theoretical_Problem.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"\n",
"// Display mode\n",
"mode(0);\n",
"\n",
"// Display warning for floating point exception\n",
"ieee(1);\n",
"\n",
"clc;\n",
"disp('Principles of Heat Transfer, 7th Ed. Frank Kreith et. al Chapter - 8 Example # 8.5 ')\n",
"\n",
"disp('There is no computations in this example.')\n",
"disp('It is theoretical')"
   ]
   }
],
"metadata": {
		  "kernelspec": {
		   "display_name": "Scilab",
		   "language": "scilab",
		   "name": "scilab"
		  },
		  "language_info": {
		   "file_extension": ".sce",
		   "help_links": [
			{
			 "text": "MetaKernel Magics",
			 "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
			}
		   ],
		   "mimetype": "text/x-octave",
		   "name": "scilab",
		   "version": "0.7.1"
		  }
		 },
		 "nbformat": 4,
		 "nbformat_minor": 0
}