1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 2: Analysis of Steam Cycles"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.1: Power_output_and_efficiency.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc\n",
"clear\n",
"//Input data\n",
"p1=40//Initial pressure of steam in bar\n",
"T1=500//Initial temperature of steam in degree C\n",
"m1=5500//Rate of steam in kg/h\n",
"p2=2//Pressure of steam after expansion in bar\n",
"n1=0.83//Isentropic efficiency \n",
"q=0.87//Quality\n",
"m2=2700//Mass flow rate in kg/h\n",
"p3=0.1//Pressure of steam after expansion in l.p turbine in bar\n",
"n2=0.78//Isentropic efficiency\n",
"\n",
"//Calculations\n",
"h1=3445.3//Enthalpy in kJ/kg\n",
"s1=7.0901//Entropy in kJ/kg.K which is 1.5301+x2s*5.5970\n",
"x2s=(5.5600/5.5970)//dryness fraction\n",
"h2s=(504.7+(x2s*2201.9))//Enthalpy in kJ/kg\n",
"h2=h1-(n1*(h1-h2s))//Enthalpy in kJ/kg\n",
"h3=(504.7+(q*2201.9))//Enthalpy in kJ/kg\n",
"h4=((m2*h3+m1*h2)/(m1+m2))//Enthalpy in kJ/kg\n",
"x4=(2183.78/2201.9)//dryness fraction\n",
"s4=(1.5301+x4*5.5970)//Entropy in kJ/kg.K\n",
"x5s=0.8574//dryness fraction\n",
"h5s=(191.84+x5s*2392.5)//Enthalpy in kJ/kg\n",
"dh4h5=(n2*(h4-h5s))//Difference in enthalpy (h4-h5) in kJ/kg\n",
"h6=191.83//Enthalpy in kJ/kg\n",
"W1=((m1*(h1-h2))+((m1+m2)*dh4h5))/3600//Power output of the plant in kW\n",
"Q1=(m1*(h1-h6))/3600//Heat input in kW\n",
"n1=(W1/Q1)*100//Efficiency in percent\n",
"WT=(m1*(h1-h2))/3600//Power output without the geothermal heat supply in kW\n",
"Q2=(m1*(h1-h6))/3600//Heat input without the geothermal heat supply in kW\n",
"n2=(WT/Q2)*100//Efficiency of the cycle without the geothermal heat supply in percent\n",
"\n",
"//Output\n",
"printf('(a)Power output of the cycle is %3.1f kW \n Efficiency of the cycle is %3.1f percent \n\n (b)Without geothermal heat supply \n Power output of the cycle is %3.2f kW \n Efficiency of the cycle is %3.2f percent',W1,n1,WT,n2)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.2: Mass_flow_rate.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc\n",
"clear\n",
"//Input data\n",
"p1=90//Initial pressure of steam in bar\n",
"T1=500//Initial temperature of steam in degree C\n",
"O=(500*1000)//Output in kW\n",
"T2=40//Condensation temperature in degree C\n",
"nhp=0.92//Efficiency of h.p turbine\n",
"nlp=0.9//Efficiency of l.p turbine\n",
"np=0.75//Isentropic efficiency of the pump \n",
"TTD=-1.6//Temperature in degree C\n",
"\n",
"//Calculations\n",
"p2=(0.2*p1)//Optimum reheat pressure in bar\n",
"h1=3386.1//Enthalpy in kJ/kg\n",
"s1=6.6576//Entropy in kJ/kg.K\n",
"s2s=s1//Entropy in kJ/kg.K\n",
"h2s=2915//Enthalpy in kJ/kg\n",
"h3=3469.8//Enthalpy in kJ/kg\n",
"s3=7.4825//Entropy in kJ/kg.K\n",
"x4s=(s3-0.5725)/7.6845//Dryness fraction\n",
"h4s=(167.57+x4s*2406.7)//Enthalpy in kJ/kg\n",
"h5=167.57//Enthalpy in kJ/kg\n",
"h7=883.42//Enthalpy in kJ/kg\n",
"Wps=(0.001008*p1*10)//Workdone by the pump in kJ/kg\n",
"h6s=176.64//Enthalpy in kJ/kg\n",
"dh1h2=(nhp*(h1-h2s))//Difference in enthalpy (h1-h2) in kJ/kg\n",
"h2=h1-dh1h2//Enthalpy in kJ/kg\n",
"dh3h4=(nlp*(h3-h4s))//Difference in enthalpy (h3-h4) in kJ/kg\n",
"h4=h3-dh3h4//Enthalpy in kJ/kg\n",
"Wp=(Wps/np)//Workdone by the pump in kJ/kg\n",
"h6=(Wp+h5)//Enthalpy in kJ/kg\n",
"tsat=207.15//Saturation temperature at 18 bar in degree C\n",
"t9=(tsat-TTD)//Temperature in degree C\n",
"h9=875//Enthalpy in kJ/kg\n",
"m=((h9-h6)/(h2-h7))//Mass of steam in kg\n",
"WT=(dh1h2+(1-m)*dh3h4)//Workdone by the turbine in kJ/kg\n",
"Wnet=(WT-Wp)//Net workdone in kJ/kg\n",
"ws=(O/Wnet)//Mass flow rate of steam at turbine inlet in kg/s\n",
"Q1=((h1-h9)+(1-m)*(h3-h2))//Heat input in kJ/kg\n",
"n=(Wnet/Q1)*100//Efficiency of the cycle in percent\n",
"Wr=(Wnet/WT)//Work ratio\n",
"\n",
"//Output\n",
"printf('(a)Mass flow rate of steam at turbine inlet is %3.0f kg/s \n (b)The cycle efficiency is %3.2f percent \n (c)Work ratio is %3.3f',ws,n,Wr)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.3: Optimum_pressures_and_temperatures.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc\n",
"clear\n",
"//Input data\n",
"p1=70//Pressure at which an ideal seam power plant operates in bar\n",
"T1=550//Temperature at which an ideal seam power plant operates in degrees C\n",
"p2=0.075//Pressure at which an ideal seam power plant operates in bar\n",
"\n",
"//Calculations\n",
"TB=285.9//Saturation temperature at 70 bar in degree C\n",
"TC=40.3//Saturation temperature at 0.075 bar in degree C\n",
"Tr=(TB-TC)/(7+1)//Temperature rise per heater for maximum cycle efficiency in degree C\n",
"t1=(TB-Tr)//Temperature at heater 1 in degree C\n",
"P1=4.33//Pressure at heater 1 in MPa\n",
"t2=(t1-Tr)//Temperature at heater 2 in degree C\n",
"P2=2.5318//Pressure at heater 2 in MPa\n",
"t3=(t2-Tr)//Temperature at heater 3 in degree C\n",
"P3=1.367//Pressure at heater 3 in MPa\n",
"t4=(t3-Tr)//Temperature at heater 4 in degree C\n",
"P4=0.6714//Pressure at heater 4 in MPa\n",
"t5=(t4-Tr)//Temperature at heater 5 in degree C\n",
"P5=0.2906//Pressure at heater 5 in MPa\n",
"t6=(t5-Tr)//Temperature at heater 6 in degree C\n",
"P6=0.108//Pressure at heater 6 in MPa\n",
"t7=(t6-Tr)//Temperature at heater 7 in degree C\n",
"P7=32.65//Pressure at heater 7 in kPa\n",
"\n",
"//Output\n",
"printf('The optimum pressure and temperature at different heaters are: \n Heater 1: t1 = %3.1f degree C and p1 = %3.2f MPa\n Heater 2: t2 = %3.1f degree C and p2 = %3.4f MPa\n Heater 3: t3 = %3.1f degree C and p3 = %3.3f MPa\n Heater 4: t4 = %3.1f degree C and p4 = %3.4f MPa\n Heater 5: t5 = %3.1f degree C and p5 = %3.4f MPa\n Heater 6: t6 = %3.1f degree C and p6 = %3.3f MPa\n Heater 7: t7 = %3.1f degree C and p7 = %3.2f kPa',t1,P1,t2,P2,t3,P3,t4,P4,t5,P5,t6,P6,t7,P7)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.4: Percentage_of_total_electricity.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc\n",
"clear\n",
"//Input data\n",
"ng=0.97//Efficiency of electric generator \n",
"nt=0.95//Efficiency of turbine\n",
"nb=0.92//Efficiency of boiler\n",
"nc=0.42//Efficiency of cycle\n",
"no=0.33//Efficiency of overall plant\n",
"\n",
"//Calculations\n",
"na=(no/(ng*nt*nb*nc))//Efficiency of auxiliaries\n",
"n=(1-na)*100//Percentage of total electricity generated which is consumed in running the auxiliaries\n",
"\n",
"//Output\n",
"printf('Percentage of total electricity generated which is consumed in running the auxiliaries is %3.2f percent',n)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.5: Percentage_of_total_heat_absorption.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc\n",
"clear\n",
"//Input data\n",
"T1=140//Temperature with which feed water enters into economiser in degree C\n",
"T2=[25,250]//Temperature from air is preheated to in degree C\n",
"P1=60//Pressure with which steam leaves the drum in bar\n",
"x1=0.98//Dryness fraction\n",
"T3=450//Temperature with which steam leaves the superheater in degree C\n",
"cc=25.2//Calorific value of coal in MJ/kg\n",
"r=8.5//Rate of evaporation of steam per kg coal \n",
"wf=1//Mass of coal in kg\n",
"R=15//Air fuel ratio by mass\n",
"Cpa=1.005//Specific heat of air at constant pressure in kJ/kg.K\n",
"Cpw=4.2//Specific heat of water at constant pressure in kJ/kg.K\n",
"\n",
"//Calculations\n",
"h1=(T1*Cpw)//Enthalpy in kJ/kg\n",
"hf=1213.35//Enthalpy in kJ/kg\n",
"h2=hf//Enthalpy in kJ/kg\n",
"hfg=1571//Enthalpy in kJ/kg\n",
"h4=3301.8//Enthalpy in kJ/kg\n",
"h3=(hf+x1*hfg)//Enthalpy in kJ/kg\n",
"n=((r*(h4-h1))/(wf*cc*1000))*100//Efficiency\n",
"he=(r*(h2-h1))/wf*10^-3//Heat transfer in the economiser in MJ/kg\n",
"hb=(r*(h3-h2))/wf*10^-3//Heat transfer in the boiler in MJ/kg\n",
"hs=(r*(h4-h3))/wf*10^-3//Heat transfer in the superheater in MJ/kg\n",
"ha=(R*Cpa*(T2(2)-T2(1)))/wf*10^-3//Heat transfer in the air preheater in MJ/kg\n",
"pe=((h2-h1)/(h4-h1))*100//Percentage of total heat absorbed in the economiser in percent\n",
"pb=((h3-h2)/(h4-h1))*100//Percentage of total heat absorbed in the boiler in percent\n",
"ps=((h4-h3)/(h4-h1))*100//Percentage of total heat absorbed in the superheater in percent\n",
"\n",
"//Output\n",
"printf('Efficiency of steam generator is %3.2f percent \n\n Heat transfer per kg fuel in \n (i)economiser is %3.4f MJ/kg \n (ii)boiler is %3.3f MJ/kg \n (iii)superheater is %3.3f MJ/kg \n (iv)air pre-heater is %3.3f MJ/kg \n\n Percentage of total heat absorption taking place in \n (i)economiser is %3.2f percent \n (ii)boiler is %3.2f percent \n (iii)superheater is %3.2f percent',n,he,hb,hs,ha,pe,pb,ps)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.6: Cycle_efficiency.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc\n",
"clear\n",
"//Input data\n",
"p1=150//Pressure of inlet steam in bar\n",
"T1=550//Temperature of steam in degree C\n",
"p2=20//Pressure after expansion in bar\n",
"T2=500//Reheat temperature in degree C\n",
"pc=0.075//Condenser pressure in bar\n",
"php=50//Pressure of steam in h.p turbine in bar\n",
"pip=[10,5,3]//Pressure of steam in i.p turbines in bar\n",
"plp=1.5//Pressure of steam in l.p turbine in bar\n",
"m=300*1000//Steam flow rate in kg/h\n",
"\n",
"//Calculations\n",
"h1=3448.6//Enthalpy in kJ/kg\n",
"h4=3467.6//Enthalpy in kJ/kg\n",
"s1=6.5119//Entropy in kJ/kg.K\n",
"s2=s1//Entropy in kJ/kg.K\n",
"s3=s1//Entropy in kJ/kg.K\n",
"s4=7.4317//Entropy in kJ/kg.K\n",
"s5=s4//Entropy in kJ/kg.K\n",
"s6=s5//Entropy in kJ/kg.K\n",
"s7=s6//Entropy in kJ/kg.K\n",
"s8=s7//Entropy in kJ/kg.K\n",
"s9=s8//Entropy in kJ/kg.K\n",
"t2=370//Temperature in degree C\n",
"t3=245//Temperature in degree C\n",
"t5=400//Temperature in degree C\n",
"t6=300//Temperature in degree C\n",
"t7=225//Temperature in degree C\n",
"t8=160//Temperature in degree C\n",
"h2=3112//Enthalpy in kJ/kg\n",
"h3=2890//Enthalpy in kJ/kg\n",
"h5=3250//Enthalpy in kJ/kg\n",
"h6=3050//Enthalpy in kJ/kg\n",
"h7=2930//Enthalpy in kJ/kg\n",
"h8=2790//Enthalpy in kJ/kg\n",
"x9=(s9-0.5764)/7.6751//Dryness fraction\n",
"h9=168.79+x9*2406////Enthalpy in kJ/kg\n",
"h10=168.79//Enthalpy in kJ/kg\n",
"h11=h10+0.001*pip(2)*100//Enthalpy in kJ/kg\n",
"h12=467.11//Enthalpy in kJ/kg\n",
"t14=111.37//Temperature in degree C\n",
"h14=467//Enthalpy in kJ/kg\n",
"h13=h12//Enthalpy in kJ/kg\n",
"h14=h13//Enthalpy in kJ/kg\n",
"h15=h14//Enthalpy in kJ/kg\n",
"h16=561.47//Enthalpy in kJ/kg\n",
"h17=h16//Enthalpy in kJ/kg\n",
"h18=640.23//Enthalpy in kJ/kg\n",
"h19=h18+0.001*(p1-pip(2))*100//Enthalpy in kJ/kg\n",
"h20=762.8//Enthalpy in kJ/kg\n",
"h21=h20//Enthalpy in kJ/kg\n",
"h22=1154.23//Enthalpy in kJ/kg\n",
"h23=h22//Enthalpy in kJ/kg\n",
"m1=((h23-h21)/(h2-h22))//Mass in kg\n",
"m2=((h21-h19)-(m1*(h22-h20)))/(h5-h20)//Mass in kg\n",
"m3=(((1-m1-m2)*(h18-h17))-((m1+m2)*(h20-h18)))/(h6-h18+h18-h17)//Mass in kg\n",
"m4=((1-m1-m2-m3)*(h17-h15))/(h7-h16)//Mass in kg\n",
"m5=(((1-m1-m2-m3-m4)*(h14-h11))-(m4*(h16-h12)))/(h8-h12+h14-h11)//Mass in kg\n",
"WT=(h1-h2)+(1-m1)*(h2-h3)+(1-m1)*(h4-h5)+(1-m1-m2)*(h5-h6)+(1-m1-m2-m3)*(h6-h7)+(1-m1-m2-m3-m4)*(h7-h8)+(1-m1-m2-m3-m4-m5)*(h8-h9)//Workdone by turbine in kJ/kg\n",
"Wp=(0.5+14.5+0.15)//Workdone in kJ/kg\n",
"Wnet=(WT-Wp)//Net workdone in kJ/kg\n",
"Q1=(h1-h23)+(1-m1)*(h4-h3)//Heat supplied in kJ/kg\n",
"ncy=(Wnet/Q1)*100//Cycle efficiency in percent\n",
"t23=264//Temperature in degree C\n",
"sr=(3600/Wnet)//Steam rate in kJ/kWh\n",
"hr=((Q1/Wnet)*3600)//Heat rate in kJ/kWh\n",
"P=((Wnet*m)/3600)/10^3//Power output in MW\n",
"\n",
"//Output\n",
"printf('(a) The cycle efficiency is %3.2f percent \n (b) The feedwater temperature is %i degree C \n (c) The steam rate is %3.2f kJ/kWh \n (d) The heat rate is %3.0f kJ/kWh \n (e) The quality of steam at turbine exhaust is %3.4f \n (f) The power output is %3.2f MW',ncy,t23,sr,hr,x9,P)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.7: Steam_condition.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc\n",
"clear\n",
"//Input data\n",
"m=10000//Mass flow rate of steam in kg/h\n",
"p=3//Pressure of steam in bar\n",
"P=1000//Power in kW\n",
"n=0.7//Internal efficiency of turbine\n",
"\n",
"//Calculations\n",
"dh=(P*3600)/m//Change in enthalpy in kJ/kg\n",
"h2=2725.3//Enthalpy in kJ/kg from Fig. E2.7 \n",
"h1=dh+h2//Enthalpy in kJ/kg \n",
"dh1h2s=dh/n//Change in enthalpy in kJ/kg\n",
"h2s=h1-dh1h2s//Enthalpy in kJ/kg\n",
"x2s=(h2s-561.47)/2163.8//Dryness fraction\n",
"s2s=1.6718+x2s*(6.999-1.6718)//Entropy in kJ/kg.K\n",
"s1=s2s//Entropy in kJ/kg.K\n",
"p1=37.3//Pressure in bar from Mollier diagram\n",
"t1=344//Temperature in degree C\n",
"\n",
"//Output\n",
"printf('The steam condition required at inlet of the turbine: \n Enthalpy is %3.1f kJ/kg \n Entropy is %3.4f kJ/kg.K \n Pressure is %3.1f bar \n Temperature is %i degree C',h1,s1,p1,t1)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.8: Steam_generation_capacity.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc\n",
"clear\n",
"//Input data\n",
"Pl=5.6//Power load in MW\n",
"Hl=1.163//Heat load in MW\n",
"p1=40//Pressure in bar\n",
"T1=500+273//Temperature in K\n",
"p2=0.06//Pressure in bar\n",
"p3=2//Pressure in bar\n",
"CV=25//Calorific value in MJ/kg\n",
"n=88//Boiler efficiency in percent\n",
"T=6//Temperature rise in degree C\n",
"\n",
"//Calculations\n",
"h1=3445.3//Enthalpy in kJ/kg\n",
"s1=7.0901//Entropy in kJ/kg.K\n",
"s2=s1//Entropy in kJ/kg.K\n",
"s3=s1//Entropy in kJ/kg.K\n",
"x2=(s2-1.5301)/5.5970//Dryness fraction\n",
"h2=2706.7//Enthalpy in kJ/kg\n",
"h26=2201.9//Difference in enthalpy in kJ/kg\n",
"w=(Hl*10^3)/h26//Rate of steam extraction in kg/h\n",
"x3=(s1-0.52)/7.815//Dryness fraction\n",
"h3=(149.79+x3*2416)//Enthalpy in kJ/kg\n",
"h4=149.79//Enthalpy in kJ/kg\n",
"ws=((Pl*10^3+(w*(h2-h3)))/((h1-h2)+(h2-h3)))//Steam generation capacity in kg/s\n",
"ws1=(ws*3600)/1000//Steam generation capacity in t/h\n",
"h7=(504.7+(1.061*10^-3*(p1-p3)*100))//Enthalpy in kJ/kg\n",
"h5=(149.79+(1.006*100*p1*10^-3))//Enthalpy in kJ/kg\n",
"Q1=(((ws-w)*(h1-h5))+(w*(h1-h7)))//Heat input in kW\n",
"wf=((Q1/1000)/((n/100)*CV))*(3600/1000)//Fuel burning rate in t/h\n",
"Q2=((ws-w)*(h3-h4))//Heat rejected to the condensor in kW\n",
"wc=(Q2/(4.187*T))/1000//Rate of flow of cooling water in m^3/s\n",
"\n",
"//Output\n",
"printf('(a) the steam generation capacity of the bolier is %3.2f t/h \n (b) the heat input to the boiler is %3.1f kW \n (c) the fuel burning rate of the bolier is %3.3f t/h \n (d) the heat rejected to the condensor is %3.0f kW \n (e) the rate of flow of cooling water in the condensor is %3.3f m^3/s',ws1,Q1,wf,Q2,wc)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.9: Power_developed.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc\n",
"clear\n",
"//Input data\n",
"m=21000//Steam rate in kg/h\n",
"p1=17//Pressure in bar\n",
"T1=230+273//Temperature in K\n",
"P=132.56//Power in kW\n",
"x2=0.957//Dryness fraction\n",
"p2=3.5//Pressure in bar\n",
"Pl=1337.5//Power in l.p turbine in kW\n",
"p3=0.3//Pressure in bar\n",
"x3=0.912//Dryness fraction\n",
"\n",
"//Calculations\n",
"h1=2869.7//Enthalpy in kJ/kg\n",
"s1=6.5408//Entropy in kJ/kg.K\n",
"h2=(870.44+x2*1924.7)//Enthalpy in kJ/kg\n",
"h3=h2//Enthalpy in kJ/kg\n",
"h56=(Pl*3600)/m//Difference in Enthalpy in kJ/kg\n",
"h6=(289.23+x3*2336.1)//Enthalpy in kJ/kg\n",
"h5=2649.04//Enthalpy in kJ/kg\n",
"s4s=s1//Entropy in kJ/kg.K\n",
"x4s=(s4s-1.7275)/5.2130//Dryness fraction\n",
"h4s=584.33+x4s*2148.1//Enthalpy in kJ/kg\n",
"w=(P/(h1-h2))//Flow rate in kg/s\n",
"ws=(m/3600)//Steam flow rate in kg/s\n",
"h4=((ws*h5)-(w*h3))/(ws-w)//Enthalpy in kJ/kg\n",
"x4=(h4-584.33)/2148.1//Dryness fraction\n",
"W=(ws-w)*(h1-h4)//Power developed by h.p turbine in kW\n",
"n=((h1-h4)/(h1-h4s))*100//Isentropic efficiency in percent\n",
"\n",
"//Output\n",
"printf('(a) the steam quality at the exhaust of the h.p turbine is %3.3f \n (b) the power developed by the h.p turbine is %3.2f kW \n (c) the isentropic efficiency of the h.p turbine is %3.2f percent',x4,W,n)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Scilab",
"language": "scilab",
"name": "scilab"
},
"language_info": {
"file_extension": ".sce",
"help_links": [
{
"text": "MetaKernel Magics",
"url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
}
],
"mimetype": "text/x-octave",
"name": "scilab",
"version": "0.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|