1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 2: Radioactivity and Isotopes"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.10: Radioactive_disintegration_of_Bi.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab code Exa2.10 : : Page 91 (2011)\n",
"clc; clear;\n",
"lambda_t = 0.693/(60.5*60);// Total decay constant, per sec\n",
"lambda_a = 0.34*lambda_t;// Decay constant for alpha_decay, per sec\n",
"lambda_b = 0.66*lambda_t;// Decay constant for beta_decay, per sec\n",
"printf('\nThe decay constant for total emission = %4.2e /sec', lambda_t);\n",
"printf('\nThe decay constant for beta_decay lambda_b = %4.2e /sec', lambda_b);\n",
"printf('\nThe decay constant for alpha_decay lambda_a = %4.2e /sec', lambda_a);\n",
"\n",
"// Result \n",
"// The decay constant for total emission = 1.91e-004 /sec\n",
"// The decay constant for beta_decay lambda_b = 1.26e-004 /sec\n",
"// The decay constant for alpha_decay lambda_a = 6.49e-005 /sec "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.13: Half_life_of_Pu239.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab code Exa2.13 : : Page 93 (2011)\n",
"clc; clear;\n",
"M_A = 4; // Mass of alpha particle, amu\n",
"M_U = 235; //Mass of U-235, amu\n",
"M_P = 239; // Mass of P-239, amu\n",
"Amount = 120.1; // quantity of P-239, g\n",
"E_A = 5.144; // Energy of emitting alpha particles, Mev\n",
"E_R = (2*M_A)/(2*M_U)*E_A; // The recoil energy of U-235, Mev\n",
"E = E_R + E_A; // The energy released per disintegration, Mev\n",
"P = 0.231; // Evaporation rate, watt\n",
"D = P/(E*1.60218e-013); // Disintegration rate, per sec\n",
"A = 6.022137e+023; // Avagadro's number, atoms\n",
"N = Amount/M_P*A; // Number of nuclei in 120.1g of P-239\n",
"T = 0.693/(D*3.15e+07)*N; // Half life of Pu_239, years\n",
"printf('\nThe half life of Pu-239 = %3.2e years', T);\n",
"\n",
"// Result \n",
"// The half life of Pu-239 = 2.42e+004 years "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.14: Disintegration_rate_of_Au199.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab code Exa2.14 : : Page 93 (2011)\n",
"clc; clear;\n",
"T_h_1 = 2.7*24*3600; // Half life of Au-198, sec\n",
"T_h_2 = 3.15*24*3600; // Half life of Au-199, sec\n",
"S_1 = 99e-028; // Crossection for first reaction, Sq.m\n",
"S_2 = 2.6e-024; // Crossection for second reaction, Sq.m\n",
"I = 1e+018; // Intensity of radiation, per Sq.m per sec\n",
"L_1 = I*S_1; // Decay constant of Au-197, per sec\n",
"L_2 = 0.693/T_h_1+I*S_2; // Decay constant of Au-198, per sec\n",
"L_3 = 0.693/T_h_2; // Decay constant of Au-199, per sec\n",
"N_0 = 6.022137e+023; // Avogadro number\n",
"N_1 = N_0/197; // Initial number of atoms of Au-197\n",
"t = 30*3600; // Given time, sec\n",
"p = [exp(-L_1*t)]/[(L_2-L_1)*(L_3-L_1)];\n",
"q = [exp(-L_2*t)]/[(L_1-L_2)*(L_3-L_2)];\n",
"r = [exp(-L_3*t)]/[(L_1-L_3)*(L_2-L_3)];\n",
"N3 = N_1*L_1*L_2*[p+q+r];\n",
"N_199 = N3;\n",
"L = L_3*N_199; // Disintegration rate of Au-199, per sec\n",
"printf('\nThe disintegration rate of Au-199 = %3.1e ', L);\n",
"\n",
"// Result\n",
"// The disintegration rate of Au-199 = 1.9e+012 (Wrong answer in the textbook)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.15: Activity_of_Na24.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab code Exa2.15 : : Page 94 (2011)\n",
"clc; clear;\n",
"Y = 110e-03;// Yield of Na-24, mCi/hr\n",
"T = 14.8;// Half life of Na-24, hours\n",
"t = 8;// Time after which activity to be compute, hours\n",
"lambda = 0.693/T;// Disintegration constant, hours^-1\n",
"A = 1.44*Y*T;// Maximum activity of Na-24, Ci\n",
"A_C = A*[1-%e^(-lambda*t)];// Activity after a continuous bombardment, Ci\n",
"Activity = A_C*(%e^(-lambda*t));// Activity after 8hours, Ci\n",
"printf('\nThe maximum activity of Na-24 = %5.3f Ci\nThe activity after a continuous bombardment = %6.4f Ci\nThe activity after 8hours = %7.5f Ci',A, A_C, Activity);\n",
"\n",
"// Result\n",
"// The maximum activity of Na-24 = 2.344 Ci\n",
"// The activity after a continuous bombardment = 0.7324 Ci\n",
"// The activity after 8hours = 0.50360 Ci "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.16: Radiation_dose_absorbed_in_24_hr_by_the_tissue_in_REP.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab code Exa2.16 : : Page 94 (2011)\n",
"clc; clear;\n",
"A_0 = 3.7e+07; // Initial activity, disintegrations per sec\n",
"T = 12.6; // Half life of I-130, hours\n",
"t = 24*3600; // time for dose absorbed calculation,sec\n",
"E = 0.29*1.6e-06; // Average energy of beta rays, ergs\n",
"m = 2; // Mass of iodine thyroid tissue, gm\n",
"lambda = 0.693/(T*3600); // Disintegration constant, sec^-1\n",
"N_0 = A_0/lambda; // Initial number of atoms\n",
"N = N_0*[1-%e^(-lambda*t)]; // Number of average atoms disintegrated\n",
"E_A = N*E; // Energy of beta rays emitted, ergs\n",
"E_G = E_A/(2*97.00035); // Energy of beta rays emitted per gram of tissue, REP \n",
"printf('\nThe energy of beta rays emitted per gram of tissue = %6.1f REP', E_G);\n",
"\n",
"// Result\n",
"// The energy of beta rays emitted per gram of tissue = 4245.0 REP "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.18: Activity_and_the_maximum_amount_of_Au198_produced_in_the_foil_of_Au197.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab code Exa2.18 : : Page 95 (2011)\n",
"clc; clear;\n",
"N_0 = 6.022137e+023; // Avagadro number\n",
"d = 0.02; // Thickness of the foil, cm\n",
"R = 19.3; // Density of Au,g/cc\n",
"N_1 = d*R/197*N_0; // Initial number of Au-197 nuclei per unit area of foil,cm^-2\n",
"T_H = 2.7*24*3600; // Half life of Au-198,sec\n",
"L = log(2)/T_H; // Decay constant for Au-198,sec^-1\n",
"I = 10^12; // Intensity of neutron beam,neutrons/cm^2/sec\n",
"S = 97.8e-024; // Cross section for reaction,cm^-2\n",
"t = 5*60; // Reaction time,s\n",
"A = S*I*N_1*(1-%e^(-L*t)); // Activity of Au-198,cm^-2sec^-1\n",
"N_2 = S*I*N_1/L; // The maximum amount of Au-198 produced,cm^-2\n",
"printf('\nThe activity of Au-198 = %5.3e per Sq.cm per sec\nThe maximum amount of Au-198 produced = %4.2e per Sq.cm', A, N_2);\n",
"\n",
"// Result\n",
"// The activity of Au-198 = 1.028e+008 per Sq.cm per sec\n",
"// The maximum amount of Au-198 produced = 3.88e+016 per Sq.cm "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.19: Pu238_as_power_source_in_space_flights.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab code Exa2.19 : : Page 95 (2011)\n",
"clc; clear;\n",
"N_0 = 6.022137e+023; // Avagadro number \n",
"T_P = 90*365*24*3600; // Half life of Pu-238,s\n",
"L_P = 0.693/T_P ; // Decay constant of Pu-238,s^-1\n",
"E = 5.5; // Energy of alpha particle, MeV\n",
"P =E*L_P*N_0; // Power released by the gm molecule of Pu-238,MeV/s\n",
"t = log(8)/(L_P*365*24*3600); // Time in which power reduces to 1/8 time of its initial value \n",
"printf('\nThe power released by the gm molecule of Pu-238 = %4.2e MeV/s \nThe time in which power reduces to 1/8 time of its initial value = %d yrs',P,t)\n",
"\n",
"// Result\n",
"// The power released by the gm molecule of Pu-238 = 8.09e+014 MeV/s \n",
"// The time in which power reduces to 1/8 time of its initial value = 270 yrs "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.1: Weight_of_one_Curie_and_one_Rutherford_of_RaB.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab code Exa2.1: : Page-88 (2011) \n",
"clc; clear;\n",
"T = 26.8*60; // Half life of the substance, s\n",
"C = 3.7e+010; // One curie, disintegration per sec\n",
"N = 6.022137e+026; // Avogadro number, per kmol\n",
"m = 214; // Molecular weight of RaB, kg/kmol\n",
"R = 1e+006; // One Rutherford, disintegration per sec.\n",
"W_C = C*T*m/(N*0.693); // Weight of one Curie of RaB, Kg \n",
"W_R = R*T*m/(N*0.693); // Weight of one Rutherford of RaB, Kg \n",
"printf('\nWeight of one Curie of RaB : %5.3e Kg \nWeight of one Rutherford of RaB : %5.3e Kg', W_C, W_R);\n",
"\n",
"// Result\n",
"// Weight of one Curie of RaB : 3.051e-011 Kg \n",
"// Weight of one Rutherford of RaB : 8.245e-016 Kg "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.20: Series_radioactive_decay_of_parent_isotope.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab code Exa2.20 : : Page 96 (2011)\n",
"clc; clear;\n",
"N_1 = 10^20; // Number of nuclei of parent isotopes\n",
"T_P = 10^4; // Half life of parent nucleus,years\n",
"T_D = 20; // Half life of daughter nucleus,years\n",
"T = 10^4; // Given time,years\n",
"L_P = 0.693/T_P ; // Decay constant of parent nucleus,years^-1\n",
"L_D = 0.693/T_D ; // Decay constant of daughter nucleus,years^-1\n",
"t_0 = log(0.03)/(L_P-L_D); // Required time for decay of daughter nucleus,years\n",
"N = L_P/L_D*(%e^(-L_P*T)-%e^(-L_D*T))*N_1; // Number of nuclei of daughter isotope\n",
"printf('\nThe required time for decay of daughter nucleus = %d yr \nThe number of nuclei of daughter isotope = %1.0e ', t_0, N);\n",
"\n",
"// Result\n",
"// The required time for decay of daughter nucleus = 101 yr \n",
"// The number of nuclei of daughter isotope = 1e+017 "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.2: Induced_radioactivity_of_sodium_by_neutron_bombardment.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab code Exa2.2 : : Page 88 (2011)\n",
"clc; clear;\n",
"T_h = 14.8; // Half life of Na-24, hours\n",
"Q = 1e+008; // Production rate of Na-24, per sec\n",
"L = 0.693/T_h; // Decay constant, per sec\n",
"t = 2; // Time after the bombardment, hours\n",
"A = Q/3.7e+010*1000; // The maximum activity of Na-24, mCi\n",
"T = -1*log(0.1)/L; // The time needed to produced 90% of the maximum activity, hour\n",
"N = 0.9*Q*3600/L*%e^(-L*t); // Number of atoms of Na-24 left two hours after bombardment was stopped\n",
"printf('\nThe maximum activity of Na-24 = %3.1f mCi\nThe time needed to produced 90 percent of the maximum activity = %4.1f hrs \nNumber of atoms of Na-24 left two hours after bombardment was stopped = %4.2e ', A, T, N);\n",
"\n",
"// Result\n",
"// The maximum activity of Na-24 = 2.7 mCi\n",
"// The time needed to produced 90 percent of the maximum activity = 49.2 hrs \n",
"// Number of atoms of Na-24 left two hours after bombardment was stopped = 6.30e+012 "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.3: Activity_of_K40_in_man_of_weight_100_Kg.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab code Exa2.3: : Page 89 (2011)\n",
"clc; clear;\n",
"T = 1.31e+09*365*24*60*60; // Half life of the substance,sec\n",
"N = 6.022137e+026; // Avogadro number.\n",
"m = 0.35*0.012*10^-2; // Mass of K-40, Kg.\n",
"A = m*N*0.693/(T*40); // Activity of K-40, disintegrations/sec. \n",
"printf('\nThe activity of K-40 = %5.3e disintegrations/sec = %5.3f micro-curie', A, A/3.7e+004);\n",
"\n",
"// Result\n",
"// The activity of K-40 = 1.061e+004 disintegrations/sec = 0.287 micro-curie "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.4: Age_of_an_ancient_wooden_boat.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab code Exa2.4 : : Page 89 (2011)\n",
"clc; clear;\n",
"T = 5568; // Half life of the C-14,years\n",
"lambda = 0.693/T; // Disintegration constant, years^-1.\n",
"N_0 = 15.6/lambda; // Activity of fresh carbon, dpm .gm\n",
"N = 3.9/lambda; // Activity of an ancient wooden boat,dpm.gm.\n",
"t = 1/(lambda)*log(N_0/N); // Age of the boat, years\n",
"printf('\nThe age of the boat : %5.3e years', t);\n",
"\n",
"// Result\n",
"// The age of the boat : 1.114e+004 years"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.5: Activity_of_the_U234.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab code Exa2.5 : : Page 90 (2011)\n",
"clc; clear;\n",
"m_0 = 3e-06;// Initial mass of the U-234, Kg\n",
"A = 6.022137e+026; //Avagadro's number, atoms\n",
"N_0 = m_0*A/234; // Initial number of atoms\n",
"T = 2.50e+05; // Half life, years\n",
"lambda = 0.693/T; // Disintegration constant\n",
"t = 150000; // Disintegration time, years\n",
"m = m_0*%e^(-lambda*t); // Mass after time t,Kg\n",
"activity = m*lambda/(365*24*60*60)*A/234; // Activity of U-234 after time t,dps\n",
"printf('\nThe activity of U-234 after %6d yrs = %5.3e disintegrations/sec', t, activity);\n",
"\n",
"// Result\n",
"// The activity of U-234 after 150000 yrs = 4.478e+005 disintegrations/sec "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.6: Number_of_alpha_decays_in_Th232.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab code Exa2.6 : : Page 90 (2011)\n",
"clc; clear;\n",
"A = 6.022137e+023; //Avagadro's number, atoms\n",
"N_0 = A/232; // Initial number of atoms\n",
"t = 3.150e+07; // Decay time, sec\n",
"lambda = 1.58e-018; // Disintegration constant,sec^-1\n",
"N = lambda*t*N_0; // Number of alpha decays in Th-232\n",
"printf('\nThe number of alpha decays in Th-232 = %5.2e ', N);\n",
"\n",
"// Result\n",
"// The number of alpha decays in Th-232 = 1.29e+011"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.7: Maximum_possible_age_of_the_earth_crust.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab code Exa2.7 : : Page 90 (2011)\n",
"clc; clear;\n",
"T_238 = 4.5e+09;// Half life of U-238, years\n",
"T_235 = 7.13e+08; // Half life of U-238, years\n",
"lambda_238 = 0.693/T_238; // Disintegration constant of U-238, years^-1\n",
"lambda_235 = 0.693/T_235; // Disintegration constant of U-235, years^-1 \n",
"N = 137.8; // Abundances of U-238/U-235\n",
"t = log(N)/(lambda_235 - lambda_238);// Age of the earth's crust, years\n",
"printf('\nThe maximum possible age of the earth crust = %5.3e years', t);\n",
"\n",
"// Result \n",
"// The maximum possible age of the earth crust = 6.022e+009 years "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.8: Number_of_radon_half_lives.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab code Exa2.8 : : Page 91 (2011)\n",
"clc; clear;\n",
"N = 10; // Number of atoms left undecayed in Rn-222\n",
"n = log(10)/log(2); // Number of half lives in Ra-222\n",
"printf('\nThe number of half lives in radon-222 = %5.3f ', n);\n",
"\n",
"// Result\n",
"// The number of half lives in radon-222 = 3.322 "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.9: Weight_and_initial_acivity_of_Po210.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab code Exa2.9 : : Page 91 (2011)\n",
"clc; clear;\n",
"M_Po = 209.9829; // Mass of Polonium, g\n",
"M_Pb = 205.9745; // Mass of lead, g\n",
"A = 6.22137e+023; // Avogadro's number\n",
"M_He = 4.0026; // Mass of alpha particle, g\n",
"C = 3e+08; // Velocity of light, m/s\n",
"T = 138*24*3600; // Half life, sec\n",
"P = 250; // Power produced, joule/sec\n",
"Q = [M_Po-M_Pb-M_He]*931.25; // disintegration energy, MeV\n",
"lambda = 0.693/T; // Disintegration constant, per year\n",
"N = P/(lambda*Q*1.60218e-013); // Number of atoms, atom\n",
"N_0 = N*%e^(1.833); // Number of atoms present initially, atom\n",
"W = N_0/A*210; // Weight of Po-210 after one year, g\n",
"A_0 = N_0*lambda/(3.7e+010); // Initial activity, curie\n",
"printf('\nThe weight of Po-210 after one year = %5.2f g \nThe initial activity of the material = %4.2e curies', W, A_0);\n",
"\n",
"// Result\n",
"// The weight of Po-210 after one year = 10.49 g \n",
"// The initial activity of the material = 4.88e+004 curies"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Scilab",
"language": "scilab",
"name": "scilab"
},
"language_info": {
"file_extension": ".sce",
"help_links": [
{
"text": "MetaKernel Magics",
"url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
}
],
"mimetype": "text/x-octave",
"name": "scilab",
"version": "0.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|