1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 5: Matter waves"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.10: Width_of_spectral_lines.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab code Ex5.10: Pg 178 (2005)\n",
"clc; clear;\n",
"\n",
"// Part (a)\n",
"h_cross = 1.05e-34; // Reduced Plank's constant, J-s\n",
"h = 6.63e-34; // Plank's constant, J-s\n",
"delta_t = 1.0e-08; // Average time to measure the excited state, s\n",
"delta_E = h_cross/(2*delta_t); // Uncertainty in energy of the excited state, J\n",
"// Since delta_E = h*delta_f, solving for delta_f\n",
"delta_f = delta_E/h; // Line width of emitted light, Hz\n",
"printf('\nLine width of emitted light = %2.0e Hz', delta_f);\n",
"\n",
"// Part (b)\n",
"c = 3e+08; // Velocity of light, m/s\n",
"lamda = 500e-09; // Wavelength of spectral line, m\n",
"f_o = c/lamda; // Center frequency of spectral line, Hz\n",
"f_b = delta_f/f_o; // Fractional broadening of spectral line\n",
"printf('\nFractional broadening of spectral line = %3.1e', f_b);\n",
"\n",
"// Result\n",
"// Line width of emitted light = 8.0e+06 Hz\n",
"// Fractional broadening of spectral line = 1.3e-08"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.1: Wave_properties_of_a_baseball.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab code Ex5.1: Pg 154 (2005)\n",
"clc; clear;\n",
"h = 6.63e-34; // Plank's constant, Js\n",
"m = 140e-03; // Mass of baseball, kg\n",
"v = 27; // Velocity of baseball, m/s\n",
"p = m*v; // Momentum of baseball, kgm/s\n",
"lamda = h/p; // de Broglie wavelength associated with baseball, m\n",
"printf('\nde-Broglie wavelength associated with baseball = %3.1e m', lamda);\n",
"\n",
"// Result\n",
"// de-Broglie wavelength associated with baseball = 1.8e-34 m "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.2: de_Broglie_wavelength_of_an_electron.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab code Ex5.2: Pg 154 (2005)\n",
"clc; clear;\n",
"\n",
"// Part (b)\n",
"h = 6.63e-34; // Plank's constant, Js\n",
"m_e = 9.11e-31; // Mass of electron, kg\n",
"q = 1.6e-19; // Charge on electron, C\n",
"V = 50; // Electric potential applied, V\n",
"lamda = h/(sqrt(2*m_e*q*V)); // de Broglie wavelength of an electron, m\n",
"printf('\nde Broglie wavelength of an electron = %3.1f angstrom', lamda/1e-10);\n",
"\n",
"// Result\n",
"// de Broglie wavelength of an electron = 1.7 angstrom "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.3: Diffraction_of_neutrons_at_the_crystal_lattice.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab code Ex5.3: Pg 158 (2005)\n",
"clc; clear;\n",
"h = 6.63e-34; // Plank's constant, J-s\n",
"lamda = 1e-10; // de Broglie wavelength of neutron, m\n",
"p = h/lamda; // Momentum associated with neutron, kg-m/s\n",
"m_n = 1.66e-27; // Mass of neutron, kg\n",
"e = 1.6e-19; // Energy equivalent of 1 eV, J/eV\n",
"K = p^2/(2*m_n); // Kinetic energy of neutron, eV\n",
"printf('\nThe momentum of neutrons = %4.2e kg-m/s', p)\n",
"printf('\nThe kinetic energy of neutrons = %4.2fe-20 J = %6.4f eV', K*1e+20, K/e);\n",
"\n",
"// Result\n",
"// The momentum of neutrons = 6.63e-24 kg-m/s\n",
"// The kinetic energy of neutrons = 1.32e-20 J = 0.0828 eV "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.8: Uncertainity_principle_for_macroscopic_objects.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab code Ex5.8: Pg 177 (2005)\n",
"clc; clear;\n",
"h_cross = 1.05e-34; // Reduced Plank's constant, J-s\n",
"delta_x = 15; // Uncertainity in position, m\n",
"v_x = 2; // Velocity of ball, m/s\n",
"m = 100e-03; // Mass of ball, kg\n",
"delta_p_x = h_cross/(2*delta_x); // Uncertainity in momentum, kg-m/s\n",
"delta_v_x = delta_p_x/m; // Minimum spread in velcoity, m/s\n",
"U_r = delta_v_x/v_x; // Relative uncertainity in velocity of ball\n",
"printf('\nThe minimum spread in velcoity of ball = %3.1e m/s', delta_v_x);\n",
"printf('\nThe relative uncertainity in velocity of ball = %4.2e', U_r);\n",
"\n",
"// Result\n",
"// The minimum spread in velcoity of ball = 3.5e-35 m/s\n",
"// The relative uncertainity in velocity of ball = 1.75e-35 "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.9: Kinetic_energy_of_electron_confined_within_the_nucleus.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab code Ex5.9: Pg 178 (2005)\n",
"clc; clear;\n",
"delta_x = 1.0e-14/2; // Uncertainity in position of electron, m\n",
"q = 1.6e-19; // Charge on electron, C\n",
"h_cross = 1.05e-34; // Reduced Plank's constant, J-s\n",
"c = 3e+08; // Velocity of light, m/s\n",
"delta_p_x = (h_cross*c)/(2*delta_x*q); // Uncertainity in momentum, eV/c\n",
"E_r = 0.551e+06; // Rest mass energy if electron, eV\n",
"E = sqrt((delta_p_x)^2 + (E_r)^2);\n",
"K = E - E_r; // Kinetic energy of electron within nucleus, eV\n",
"printf('\nKinetic energy of electron within nucleus = %4.1f MeV', K/1e+06);\n",
"\n",
"// Result\n",
"// Kinetic energy of electron within nucleus = 19.1 MeV"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Scilab",
"language": "scilab",
"name": "scilab"
},
"language_info": {
"file_extension": ".sce",
"help_links": [
{
"text": "MetaKernel Magics",
"url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
}
],
"mimetype": "text/x-octave",
"name": "scilab",
"version": "0.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|