1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 2: Relativity II"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.1: Momentum_of_an_electron.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab code Ex2.1: Pg.44 (2005)\n",
"clc; clear;\n",
"c = 3e08; // Velocity of light, m/s\n",
"u = 0.750*c; // Velocity of electron, m/s\n",
"m = 9.11e-31; // Rest mass of electron, kg\n",
"p_r = m*u/(sqrt(1 - (u/c)^2)); // Relativistic momentum of electron, kgm/s\n",
"p = m*u; // Classical momentum of electron, kg-m/s\n",
"printf('\nThe relativistic momentum of electron = %4.2fe-22 kg-m/s', p_r*1e+22);\n",
"printf('\nThe classical momentum of electron = %4.2fe-22 kg-m/s', p*1e+22);\n",
"printf('\nThe relativistic result is 50 percent greater than the classical result.');\n",
"\n",
"//Result\n",
"// The relativistic momentum of electron = 3.10e-22 kg-m/s\n",
"// The classical momentum of electron = 2.05e-22 kg-m/s\n",
"// The relativistic result is 50 percent greater than the classical result."
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.3: Energy_of_a_speedy_electron.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab code Ex2.3: Pg.47 (2005)\n",
"clc; clear;\n",
"c = 3e+08; // Velocity of light, m/s\n",
"u = 0.85*c; // Velocity of electron, m/s\n",
"E_0 = 0.511; // Rest energy of electron, MeV\n",
"E = E_0/(sqrt(1-(u/c)^2)); // Total energy of electron, MeV\n",
"K = E - E_0; // Kinetic energy of electron, MeV\n",
"printf('\nThe total energy of electron = %5.3f MeV', E);\n",
"printf('\nThe kinetic energy of electron = %5.3f MeV', K);\n",
"\n",
"// Result\n",
"// The total energy of electron = 0.970 MeV\n",
"// The kinetic energy of electron = 0.459 MeV"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.4: Energy_of_a_speedy_proton.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab code Ex2.4: Pg.47 (2005)\n",
"clc; clear;\n",
"c = 3e+08; // Velocity of light, m/s\n",
"u = 0.85*c; // Velocity of electron, m/s\n",
"m_p = 1.67e-27; // Rest mass of proton, kg\n",
"\n",
"// Part (a)\n",
"E_o = m_p*c^2/1.602e-019; // Rest energy of proton, MeV\n",
"printf('\nRest energy of proton = %3d MeV', E_o/1e+06);\n",
"\n",
"// Part (b)\n",
"// Since given that E = 3*E_o = (3*m_p*c^2)/sqrt(1-(u/c)^2), solving for u\n",
"u = sqrt(8/9)*c; // Velocity of proton, m/s\n",
"printf('\nVelocity of proton = %4.2fe+08 m/s', u*1e-08);\n",
"\n",
"// Part (c)\n",
"// Since K = E - m_p*(c^2) = 3*m_p*(c^2) - m_p*(c^2) = 2*m_p*(c^2)\n",
"K = 2*E_o; // Kinetic energy of proton, MeV\n",
"printf('\nThe kinetic energy of proton = %4d MeV', K*1e-06);\n",
"\n",
"// Part (d)\n",
"p = sqrt(8)*(E_o);\n",
"printf('\nThe momentum of proton = %4d MeV/c', p*1e-06);\n",
"\n",
"// Result\n",
"// Rest energy of proton = 938 MeV\n",
"// Velocity of proton = 2.83e+08 m/s\n",
"// The kinetic energy of proton = 1876 MeV\n",
"// The momentum of proton = 2653 MeV/c "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.5: Increase_in_mass_of_colliding_balls.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab code Ex2.5: Pg.49 (2005)\n",
"clc; clear;\n",
"u = 450; // Velocity ofeach ball, m/s\n",
"m = 5; // Mass of each ball, kg\n",
"c = 3e+08; // Velocity of light, m/s\n",
"// Since (u/c)^2 << 1, therefore, substituting 1/sqrt(1 - (u/c)^2) = 1 + (1/2)*(u/c)^2\n",
"delta_M = m*(u/c)^2; // Increase in the mass of balls, kg\n",
"printf('\nIncrease in the mass of the balls = %3.1fe-11 kg', delta_M*1e+11);\n",
"\n",
"// Result\n",
"// Increase in the mass of the balls = 1.1e-11 kg"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.7: A_Fission_Reaction.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab code Ex2.7: Pg.50 (2005)\n",
"clc; clear;\n",
"u = 1.660e-27; // Atomic mass unit\n",
"M_U = 236.045563; // Atomic mass of Uranium, u\n",
"M_Rb = 89.914811; // Atomic mass of Rubidium, u\n",
"M_Cs = 142.927220; // Atomic mass of Caesium, u\n",
"m_n = 1.008665; // Mass of neutons, u\n",
"\n",
"// Part (a)\n",
"printf('\nU(92,235) --> Rb(37,90) + Cs(55,143) + 3n(0,1)');\n",
"printf('\nSo three neutrons are produced per fission.\n');\n",
"\n",
"// Part (b)\n",
"delta_M = (M_U - (M_Rb + M_Cs + 3*m_n))*u; // Combined mass of all products, kg\n",
"printf('\nCombined mass of all products = %6.4fe-28 kg\n', delta_M*1e+28);\n",
"\n",
"// Part (c)\n",
"// For simplification let velocity of light = 1 m/s\n",
"c = 1; // Velocity of light, m/s\n",
"// Since 1u = 931.5 MeV/(c^2), therefore\n",
"Q = (delta_M/u)*931.5*(c^2); // Energy given out per fission event, MeV\n",
"printf('\nEnergy given out per fission event = %5.1f MeV\n', Q);\n",
"\n",
"// Part (d)\n",
"N = ((6.02e23)*1000)/236; // Number of nuclei present\n",
"efficiency = 0.40;\n",
"E = efficiency*N*Q*(4.45e-20); // Total energy released, kWh\n",
"printf('\nTotal energy released = %4.2fe+06 kWh\n', E*1e-06);\n",
"\n",
"printf('\nThis amount of energy will keep a 100-W lightbulb burning for %d years', E*1000/(100*24*365));\n",
"\n",
"// Result\n",
"// U(92,235) --> Rb(37,90) + Cs(55,143) + 3n(0,1)\n",
"// So three neutrons are produced per fission.\n",
"// Combined mass of all products = 2.9471e-28 kg\n",
"// Energy given out per fission event = 165.4 MeV\n",
"// Total energy released = 7.51e+06 kWh\n",
"// This amount of energy will keep a 100-W lightbulb burning for 8571 years "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.8: Energy_conservation.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab code Ex2.8: Pg.52 (2005)\n",
"clc; clear;\n",
"\n",
"// Part (a)\n",
"// Since 1 eV = 1.6e-19 J, therefore 3 eV = 3*1.6e-19\n",
"BE = 3*1.6e-19; // Binding energy of water, J\n",
"c = 3e+08; // Velocity of light, m/s\n",
"delta_m = BE/(c^2); // Mass difference of water molecule & it constituents, kg\n",
"printf('\nMass difference of water molecule & it constituents = %3.1fe-36 kg', delta_m*1e+36);\n",
"\n",
"// Part (b)\n",
"M = 3.0e-26; // Mass of water molecule, kg\n",
"M_f = delta_m/M; // Fractional loss of mass per molecule\n",
"printf('\nThe fractional loss of mass per molecule = %3.1fe-10', M_f*1e+10);\n",
"\n",
"// Part (c)\n",
"E = M_f*(c^2); // Energy released when 1 g of water is formed, kJ\n",
"printf('\nEnergy released when 1 g of water is formed = %2.0f kJ', E*1e-06);\n",
"\n",
"// Result\n",
"// Mass difference of water molecule & it constituents = 5.3e-36 kg\n",
"// The fractional loss of mass per molecule = 1.8e-10\n",
"// Energy released when 1 g of water is formed = 16 kJ"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.9: Mass_of_Pio.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab code Ex2.9: Pg.53 (2005)\n",
"clc; clear;\n",
"K_mu = 4.6; // Kinetic energy of muon, MeV\n",
"// For convinience let m_mew*(c^2) = E_mew\n",
"E_mu = 106; // Energy of muon, MeV\n",
"E_pion = sqrt((E_mu^2) + (K_mu^2) + (2*K_mu*E_mu)) + sqrt((K_mu^2) + (2*K_mu*E_mu));\n",
"m_pion = E_pion; // Mass of pion, MeV/(c^2)\n",
"printf('\nMass of Pion = %3.0f MeV/(c^2)', m_pion);\n",
"\n",
"// Result\n",
"// Mass of Pion = 142 MeV/(c^2)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Scilab",
"language": "scilab",
"name": "scilab"
},
"language_info": {
"file_extension": ".sce",
"help_links": [
{
"text": "MetaKernel Magics",
"url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
}
],
"mimetype": "text/x-octave",
"name": "scilab",
"version": "0.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|