1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 9: Molecular Structure"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 9.1: Charge_on_the_sphere.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clear\n",
"clc\n",
"disp('Ex-9.1');\n",
"E=-2.7;\n",
"K=9*(10^9)*((1.6*(10^-19))^2)/(0.106*10^-9);// taking all the values in meters. 1/(4*pi*e0)= 9*10^9 F/m\n",
"q=((K-E*10^-9)/(4*K))*10^-9; //balancin by multiplying 10^-9 on numerator. to eV.vm terms\n",
"printf('Charge on the sphere required is %.2f times the charge of electron.',q);"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 9.2: Solution_for_a_and_b.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clear\n",
"clc\n",
"disp('Exa-9.2(a)');\n",
"K=1.44; Req=0.236; // K=e^2/(4*pi*e0)=1.44 eV.nm\n",
"Uc=-K/(Req); //coulomb energy\n",
"printf('The coulomb energy at an equilirium separation distance is %.2f eV\n',Uc);\n",
"E=-4.26; delE=1.53; //various standars values of NaCl\n",
"Ur=E-Uc-delE; \n",
"printf('The pauli''s repulsion energy is %.2f eV\n',Ur);\n",
"disp('Exa-9.2(b)');\n",
"Req=0.1; //pauli repulsion energy\n",
"Uc=-K/(Req);\n",
"E=4; delE=1.53;\n",
"Ur=E-Uc-delE;\n",
"printf('The pauli''s repulsion energy respectively is is %.2f eV\n',Ur);"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 9.3: vibrational_frequency_and_photon_energy_of_H2.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clear \n",
"clc\n",
"disp('Exa-9.3');\n",
"delE=0.50; delR=0.017*10^-9; //delE= E-Emin; delR=R-Rmin;\n",
"k=2*(delE)/(delR^2);c=3*10^8; //force constant\n",
"m=(1.008)*(931.5*10^6)*0.5; //mass of molecular hydrogen\n",
"v= sqrt(k*c^2/m)/(2*%pi); //vibrational frequency\n",
"h=4.14*(10^-15);\n",
"E=h*v;\n",
"printf('The value of corresponding photon energy is %.2f eV',E);"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 9.4: Energies_and_wavelengths_of_3_lowest_radiations_emitted_by_molecular_H2.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clear \n",
"clc\n",
"disp('Exa-9.4');\n",
"hc=1240; //in eV.nm\n",
"m=0.5*1.008*931.5*10^6; //mass of hydrogen atom\n",
"Req=0.074; //equivalent radius\n",
"a=((hc)^2)/(4*(%pi^2)*m*(Req^2)); //reduced mass of hydrogen atom\n",
"for L=1:3,\n",
" delE= L*a; printf('The value of energy is %f eV\n',delE); \n",
" w=(hc)/delE;printf('The respective wavelength is is %f um\n',w*10^-3); \n",
"end\n",
""
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 9.5: Rotational_Inertia_of_molecule.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clear\n",
"clc\n",
"disp('Exa-9.5'); \n",
"delv=6.2*(10^11); //change in frequency\n",
"h=1.05*(10^-34); //value of h in J.sec\n",
"I= h/(2*%pi*delv); //rotational inertia\n",
"printf('The value of rotational inertia is %.2e kg m2 ',I);\n",
"I=I/(1.684604e-045);\n",
"printf('which in terms of amu is %.3f u.nm2',I);"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 9.6: Solution_for_a_and_b.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clear\n",
"clc\n",
"disp('Ex-9.6(a)');\n",
"delE=0.358;hc=4.14*10^-15; //hc in eV.nm and delE=1.44eV(given values)\n",
"f=(delE)/hc; //frequency \n",
"printf('The frequency of the radiation is %.3e.\n',f);\n",
"m=0.98; //mass in terms of u\n",
"k=4*%pi^2*m*f^2; //value of k in eV/m^2\n",
"printf('The force constant is %.3e.\n',k); \n",
"disp('Ex-9.6(b)');\n",
"hc=1240; m=0.98*1.008*931.5*10^6; Req=0.127; //various constants in terms of \n",
"s=((hc)^2)/(4*(%pi^2)*m*(Req^2)); // expeted spacing \n",
"printf('The spacing was found out to be %f which is very close to the graphical value of 0.0026 eV.',s);"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Scilab",
"language": "scilab",
"name": "scilab"
},
"language_info": {
"file_extension": ".sce",
"help_links": [
{
"text": "MetaKernel Magics",
"url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
}
],
"mimetype": "text/x-octave",
"name": "scilab",
"version": "0.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|