1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 2: The electron"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.1: Calculate_e_by_m_ratio.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//Initialisation of variables\n",
"clc\n",
"v=3e9//cms per second\n",
"X=.06//e.s unit\n",
"R=300//cms\n",
"//(m*v^2/r)=X*e\n",
"electronbymass=v^2/(R*X)\n",
"printf('e/m ratio is %e esu \n',electronbymass)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.2: Calculate_e_by_m_ratio_of_electro.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//Initialisation of variables\n",
"clc\n",
"e=1.603e-20//electron volts\n",
"t=6.6e-9\n",
"m=9.11e-28//mass of electron\n",
"V=500e8//e.m.u\n",
"d=5//cm\n",
"X=V/d//e.m.u per cm\n",
"f=X*e//force on electron\n",
"a=f/m//acceleration of electron\n",
"v=a*t//velocity of electron\n",
"dist=.5*a*t^2//distance travelled\n",
"printf('velocity of electron is %e cm per s \n',v)\n",
"printf('distance travelled is %d cms \n',dist)\n",
"\n",
"\n",
"\n",
""
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.3: Calculate_velocity_acquired_and_distance_travelled_by_electron.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"\n",
"//Initialisation of variables\n",
"clc\n",
"a=10^(-5)\n",
"d=1\n",
"e=4.8*10^(-10)\n",
"g=980\n",
"X=4*%pi*a^3*d*g/(3*e)\n",
"printf('field required to keep drop stationary is %e esu per cm \n',X)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.4: Calculate_electric_field_required_to_keep_electron_stationary.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//Initialisation of variables\n",
"clc\n",
"m=9.1*10^(-28)//mass on electron\n",
"e=4.8*10^(-10)//charge on electron\n",
"ev=1.6e-12//electron volt in ergs\n",
"v=10^9//cms/sec\n",
"E=0.5*m*v^2//energy in ergs\n",
"Ev=E/ev\n",
"printf('energy is %e ergs \n',E)\n",
"printf('energy is %f electron volt \n',Ev)\n",
""
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Scilab",
"language": "scilab",
"name": "scilab"
},
"language_info": {
"file_extension": ".sce",
"help_links": [
{
"text": "MetaKernel Magics",
"url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
}
],
"mimetype": "text/x-octave",
"name": "scilab",
"version": "0.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|