1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 19: COMPOSITE MATERIALS"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 19.1: Find_flexural_rigidity_of_sandwich_construction.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//Find flexural rigidity of sandwich construction\n",
"//Ex:19.1\n",
"clc;\n",
"clear;\n",
"close;\n",
"t_s=3;//in mm\n",
"t_c=24;//in mm\n",
"b=100;//in mm\n",
"d=(t_s+t_c)/2;//in mm\n",
"is=((b*t_s^3)/12)+(b*t_s*d^2);//in mm^4\n",
"ic=b*t_c^3/12;//in mm^4\n",
"m_p=7000;//moduli of polyester skin in N/mm^2\n",
"m_f=20;//moduli of foam core in N/mm^2\n",
"d_fr=(2*m_p*is)+(m_f*ic);//in N/mm^2\n",
"disp(d_fr,'Flexural rigidity (in N/sqm) = ');"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 19.2: Determine_volume_ratio_of_Al_and_B_in_aluminium_boron_composite.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//Determine volume ratio of Al and B in aluminium boron composite\n",
"//Ex:19.2\n",
"clc;\n",
"clear;\n",
"close;\n",
"ec=210;//in GPa\n",
"ea=71;//in GPa\n",
"eb=440;//in GPa\n",
"va=(ec-eb)/(ea-eb);\n",
"disp(va,'Va = ');\n",
"vb=1-va;\n",
"disp(vb,'Vb = ');\n",
"c=vb/va;\n",
"disp(c,'Volume ratio = ');"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 19.3: Calculate_fraction_of_load_carried_by_fibres.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//Calculate fraction of load carried by fibres \n",
"//Ex:19.3\n",
"clc;\n",
"clear;\n",
"close;\n",
"ef=430;//in GPa\n",
"e=3.6;//in GPa\n",
"m=ef/e;\n",
"vf=0.15;//by volume\n",
"vm=1-vf;\n",
"x=vm/vf;\n",
"pf=m;\n",
"pc=m+x;\n",
"y=pf/pc;\n",
"disp(y,'fraction of load carried by fibres (15 % by volume) = ');\n",
"vf1=0.65\n",
"vm1=1-vf1;\n",
"z=vm1/vf1;\n",
"pc1=m+z;\n",
"zz=pf/pc1;\n",
"disp(zz,'fraction of load carried by fibres (65 % by volume) = ')"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 19.4: EX19_4.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//Find longitudinal strength longitudianl modulous transverse modulous Poisson ratio Shear modulous\n",
"//Ex:19.4\n",
"clc;\n",
"clear;\n",
"close;\n",
"vf=0.65;\n",
"vm=1-vf;\n",
"kts=2.8;//in Gpa\n",
"ets=0.0025;//in GPa\n",
"ac=(kts*vf)+(ets*vm);//in GPa\n",
"disp(ac,'Longitudinal Strength (in GPa) = ');\n",
"ktm=130;//in GPa\n",
"etm=3.5;//in GPa\n",
"ec=(ktm*vf)+(etm*vm);\n",
"disp(ec,'Longitudianl Modulous (in GPa) = ');\n",
"e_c=1/((vf/ktm)+(vm/etm));\n",
"disp(e_c,'Transverse Modulous (in GPa) = ');\n",
"kp=0.34;//in GPa\n",
"ep=0.36;//in GPa\n",
"vlt=(vf*kp)+(vm*vm);\n",
"disp(vlt,'Poissons Ratio = ');\n",
"glt=1/((vf/2.2)+(vm/1.2));//in GPa\n",
"disp(glt,'Shear Modulous (in GPa) = ');"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Scilab",
"language": "scilab",
"name": "scilab"
},
"language_info": {
"file_extension": ".sce",
"help_links": [
{
"text": "MetaKernel Magics",
"url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
}
],
"mimetype": "text/x-octave",
"name": "scilab",
"version": "0.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|