1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 5: Interphase Mass Transfer"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.1: Local_overall_mass_transfer_coeffecient.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clear;\n",
"clc;\n",
"\n",
"// Illustration 5.1\n",
"// Page: 114\n",
"\n",
"printf('Illustration 5.1 - Page: 114\n\n');\n",
"\n",
"// solution\n",
"\n",
"//***Data***//\n",
"// a = NH3, b = H2O\n",
"d = 2.54*10^(-2);// [m]\n",
"Yag = 0.80;\n",
"Xal = 0.05;\n",
"T = 273+26.7;// [K]\n",
"Kl = 2.87*10^(-5);// [kmol/square m.s.(kmol/cubic m)]\n",
"Sh = 40;\n",
"Da = 2.297*10^(-5);// [square m.s]\n",
"P = 1.0133*10^(5);// [N/square m]\n",
"Xbm = 1.0;\n",
"//*********//\n",
"\n",
"Ma = 18;// [kg/kmol]\n",
"// Liquid:\n",
"// Because of large conc. of ammonia in gas F's rather than k's are used.\n",
"// Molecular weight of water and ammonia are nearly same.\n",
"// The density of the solution is practically that of water.\n",
"MolarDensity1 = 1000/Ma;// [kmol/cubic m]\n",
"// Kl is determined for dilute soln. where Xbm is practically 1.0\n",
"Fl = Kl*Xbm*MolarDensity1;// [kmol/square m.s]\n",
"Ma = 18;// [kg-/kmol]\n",
"// Gas:\n",
"MolarDensity2 = (1/22.41)*(273/(273+26.7));// [kmol/cubic m]\n",
"Fg = Sh*MolarDensity2*Da/d;// [kmol/square m.s]\n",
"\n",
"// Mass Transfer Flux\n",
"// Th eqb. distribuion data for NH3 from 'The Chemical Engineers Handbook' 5th Edt. p3-68:\n",
"// Data = [Xa,pa]\n",
"// Xa = NH3 mole fraction in gas phas\n",
"// pa = NH3 partial pressure in N/square m\n",
"Data = [0 0;0.05 7171;0.10 13652;0.25 59917;0.30 93220];\n",
"// Ya_star = mole fraction of NH3 in gas phase at eqb.\n",
"Ya_star = zeros(5);\n",
"for i = 1:5\n",
" Ya_star(i) = (Data(i,2)/P);\n",
"end\n",
"// For transfer of only one component\n",
"Na_by_SummationN = 1.0;\n",
"Ya = zeros(5);\n",
"for i = 1:5\n",
" Ya(i) = 1-((1-Yag)*(1-Xal)/(1-Data(i)));\n",
"end\n",
"scf(0);\n",
"plot(Data(:,1),Ya_star,Data(:,1),Ya);\n",
"xgrid();\n",
"xlabel('Xa = mole fraction of NH3 in liquid phase');\n",
"ylabel('Ya = mole fraction of NH3 in gas phase');\n",
"legend('equilibrium line','operating line');\n",
"title('Ya Vs Xa');\n",
"\n",
"// From intersection of operating line & Eqb. line\n",
"Xai = 0.274;\n",
"Yai = 0.732;\n",
"\n",
"// From Eqn.5.20\n",
"Na = Na_by_SummationN*Fg*log((Na_by_SummationN-Yai)/(Na_by_SummationN-Yag));// [kmol NH3 absorbed/square m.s]\n",
"printf('Local mass transfer flux for ammonia is %e kmol/square m.s',Na);"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.2: Stages_and_Mass_Transfer_Rates.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clear;\n",
"clc;\n",
"\n",
"// Illustration 5.2\n",
"// Page: 130\n",
"\n",
"printf('Illustration 5.2 - Page: 130\n\n');\n",
"\n",
"// solution\n",
"\n",
"//****Data***//\n",
"// Eqb. data\n",
"// Data = [Wt% of moisture in the soap,Partial pressure of water in air(mm Hg)]\n",
"Data = [0 0;2.40 9.66;3.76 19.20;4.76 28.4;6.10 37.2;7.83 46.4;9.90 55.0; 12.63 63.2;15.40 71.9;19.02 79.5];\n",
"P = 760;// [mm Hg]\n",
"// Initial air\n",
"p1 = 12;// [mm Hg]\n",
"T = 273+75;// [K]\n",
"//******//\n",
"\n",
"// Y = kg water/kg dry air\n",
"// X = kg water/kg dry soap\n",
"// E = Air water phase\n",
"// R = Soap water phase\n",
"Y = zeros(10);\n",
"X = zeros(10);\n",
"for i = 1:10\n",
" Y(i) = Data(i,2)/(P-Data(i,2))*(18.02/29);\n",
" X(i) = Data(i,1)/(100-Data(i,1));\n",
"end\n",
"\n",
"printf('Illustration 5.2 (a)\n\n');\n",
"\n",
"// Soln. (a)\n",
"// First operation\n",
"Y1 = p1/(P-p1);// [kg water/kg dry soap]\n",
"// Initial Soap\n",
"S1 = 16.7/(100-16.7);// [kg water/kg dry soap]\n",
"// Final soap\n",
"S2 = 13/(100-13);// [kg water/kg dry soap]\n",
"Rs = 10*(1-0.167);// [kg dry soap]\n",
"// Using ideal gas law\n",
"Es = 10*((760-p1)/760)*(273/T)*(29/22.41);// [kg dry air]\n",
"slopeOperat = -Rs/Es;\n",
"\n",
"deff('[y] = f2(x)','y = slopeOperat*(x-S1)+Y1')\n",
"x = S1:-0.01:S2;\n",
"\n",
"// Second Operation\n",
"X1 = S2;\n",
"scf(1);\n",
"deff('[y] = f3(S)','y = slopeOperat*(S-X1)+Y1');\n",
"S = 0:0.01:S1;\n",
"plot(X,Y,x,f2,S,f3);\n",
"xlabel('kg water / kg dry soap');\n",
"ylabel('kg water / kg dry air');\n",
"legend('Equilibrium line','First Process','Second Process');\n",
"a = get('current_axes');\n",
"tight_limits = 'on';\n",
"a.data_bounds = [0 0;0.24 0.08];\n",
"xgrid();\n",
"title('Illustration 5.2(a)')\n",
"// Results for First Process\n",
"// The condition at abcissa S2 correspond to the end of first operation\n",
"printf('Conditions corresponding to First Operation \n')\n",
"printf('X = %f kg water/kg dry soap\n',S2);\n",
"printf('Y = %f kg water/kg dry air\n',f2(S2));\n",
"\n",
"// Results for Second Process\n",
"// The point at which the line meets the equilibrium line corresponds to the final value\n",
"X2 = 0.103;\n",
"Y2 = (X2/(1+X2));\n",
"printf('Final moisture content of soap is %f %%\n\n',Y2*100);\n",
"\n",
"printf('Illustration 5.2 (b)\n\n');\n",
"\n",
"// Solution (b)\n",
"\n",
"Rs = 1*(1-0.167);// [kg dry soap/h]\n",
"// Entering soap\n",
"X1 = 0.20;// [kg water/kg dry soap]\n",
"// Leaving soap\n",
"x = 0.04;\n",
"X2 = x/(1-x);// [kg water/kg dry soap]\n",
"// Entering air\n",
"Y2 = 0.00996;// [from Illustration 5.2(a), kg water/kg dry air]\n",
"// The operating line of least slope giving rise to eqb. condition will indicate least amount of air usable.\n",
"// At X1 = 0.20; the eqb. condition:\n",
"Y1 = 0.0675;// [kg water/kg dry air]\n",
"scf(2);\n",
"deff('[y] = f4(x)','y = ((Y1-Y2)/(X1-X2))*(x-X1)+Y1');\n",
"x = X2:0.01:0.24;\n",
"plot(X,Y,x,f4);\n",
"xlabel('kg water / kg dry soap');\n",
"ylabel('kg water / kg dry air');\n",
"a = get('current_axes');\n",
"tight_limits = 'on';\n",
"a.data_bounds = [0 0;0.24 0.08];\n",
"xgrid();\n",
"title('Illustration 5.2(b)')\n",
"legend('Equilibrium line','Operating Line');\n",
"// By Eqn. 5.35\n",
"Es = Rs*(X1-X2)/(Y1-Y2);// [kg dry air/h]\n",
"Esv = (Es/29)*22.41*(P/(P-p1))*(T/273);// [cubic m/kg dry soap]\n",
"printf('Minimum amount of air required is %f cubic m/kg dry soap\n\n',Esv);\n",
"\n",
"printf('Illustration 5.2 (c)\n\n');\n",
"\n",
"// solution (c)\n",
"\n",
"Esnew = 1.30*Es;// [kg dry air/h]\n",
"Y1 = Rs*((X1-X2)/Esnew)+Y2;\n",
"scf(3);\n",
"deff('[y] = f5(x)','y = ((Y1-Y2)/(X1-X2))*(x-X1)+Y1');\n",
"x = X2:0.01:0.24;\n",
"plot(X,Y,x,f5);\n",
"xlabel('kg water / kg dry soap');\n",
"ylabel('kg water / kg dry air');\n",
"a = get('current_axes');\n",
"tight_limits = 'on';\n",
"a.data_bounds = [0 0;0.24 0.08];\n",
"xgrid();\n",
"title('Illustration 5.2(c)')\n",
"legend('Equilibrium line','Operating Line');\n",
"// with final coordinates X = X1 & y = Y1\n",
"// From figure, Total number of eqb . stages = 3\n",
"N = 3;\n",
"printf('Moisture content of air leaving the drier is %f kg water/kg dry air\n',Y1);\n",
"printf('Total number of eqb. stages = %d\n',N);"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Scilab",
"language": "scilab",
"name": "scilab"
},
"language_info": {
"file_extension": ".sce",
"help_links": [
{
"text": "MetaKernel Magics",
"url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
}
],
"mimetype": "text/x-octave",
"name": "scilab",
"version": "0.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|