1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 16: Clutches and Brakes"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 16.1: Calculation_of_Torque_and_Power.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;\n",
"clear;\n",
"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-16.1 Page No.358\n');\n",
"//Torque capacity\n",
"f=0.3;\n",
"N=120;\n",
"ro=12;\n",
"ri=9;\n",
"Tf=f*N*(ro+ri)/2;\n",
"mprintf('\n Torque capacity = %f in-lb.',Tf);\n",
"n=2000;\n",
"//Power\n",
"Pf=Tf*n/63000;\n",
"mprintf('\n Power = %f hp.',Pf);"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 16.2: Determination_of_Breaking_Torque.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;\n",
"clear;\n",
"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-16.2 Page No.359\n');\n",
"//Normal force\n",
"W=100;\n",
"L=20;\n",
"a=4;\n",
"N=(W*L)/a;\n",
"mprintf('\n Normal force = %f lb.',N);\n",
"//Torque friction\n",
"f=0.4;\n",
"D=12;\n",
"Tf=f*N*D/2;\n",
"mprintf('\n Torque friction = %f in-lb.',Tf);"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 16.3: Torque_Transmitting_Capacity.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;\n",
"clear;\n",
"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-16.3 Page No.360\n');\n",
"//For alpha=20 deg.\n",
"alpha=20*(%pi/180);\n",
"f=0.35;\n",
"rm=12/2;\n",
"Fa=75;\n",
"Tf=(f*rm*Fa)/(sin(alpha)+f*cos(alpha));\n",
"mprintf('\n Torque capacity (alpha=20 deg.) = %f in-lb.',Tf);\n",
"//For alpha=10 deg.\n",
"alpha=10*(%pi/180);\n",
"Tf=(f*rm*Fa)/(sin(alpha)+f*cos(alpha));\n",
"mprintf('\n Torque capacity (alpha=10 deg.) = %f in-lb.',Tf);"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 16.4: Calculation_of_Stopping_Force_Torque_per_Brake_Normal_Brake_Force_etc.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;\n",
"clear;\n",
"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-16.4 Page No.361\n');\n",
"//Stopping rate\n",
"V=60*5280/3600;\n",
"Va=0.5*V;\n",
"D=400;\n",
"t=D/Va;\n",
"a=V/t;\n",
"mprintf('\n Stopping rate = %f ft/sec^2.',a);\n",
"//Stopping force\n",
"W=40000;\n",
"g=32.2;\n",
"F=W*a/g;\n",
"//Torque\n",
"r=36/2;\n",
"T=F*r;\n",
"mprintf('\n Torque = %f in-lb.',T);\n",
"//For each wheel\n",
"T=T/10;\n",
"//Braking normal force\n",
"rm=10;\n",
"f=0.4;\n",
"N=T/(f*rm);\n",
"mprintf('\n Braking normal force = %f lb.',N);\n",
"//Note-There is an error in the answer given in textbook"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 16.5: Rotational_Inertia_and_Brake_Power.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;\n",
"clear;\n",
"mprintf('MACHINE DESIGN \n Timothy H. Wentzell, P.E. \n EXAMPLE-16.5 Page No.365\n');\n",
"W=3500;\n",
"V=73;\n",
"g=32.2;\n",
"V=50*5280/3600;\n",
"V=round(V);\n",
"//Kinetic energy to be absorbed\n",
"KE=W*V^2/(2*g);\n",
"mprintf('\n Kinetic energy to be absorbed = %f ft-lb.',KE);\n",
"//Temperature rise\n",
"Uf=KE;\n",
"Wb=40;\n",
"c=93;\n",
"deltaT=Uf/(Wb*c);\n",
"mprintf('\n Temperature rise = %f deg.',deltaT);\n",
"//Stopping time\n",
"a=20;\n",
"t=V/a;\n",
"mprintf('\n Stopping time = %f sec.',t);\n",
"//Frictional power\n",
"t=round(t*10)/10;\n",
"fhp=Uf/(550*t);\n",
"mprintf('\n Frictional power = %f hp.',fhp)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Scilab",
"language": "scilab",
"name": "scilab"
},
"language_info": {
"file_extension": ".sce",
"help_links": [
{
"text": "MetaKernel Magics",
"url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
}
],
"mimetype": "text/x-octave",
"name": "scilab",
"version": "0.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|