summaryrefslogtreecommitdiff
path: root/Irrigation_and_Water_Power_Engineering_by_B_C_Punmia/12-DIVERSION_HEADWORKS.ipynb
blob: 97bc0a7c371646f682b2dcc72233d73fcfe1b6fd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
{
"cells": [
 {
		   "cell_type": "markdown",
	   "metadata": {},
	   "source": [
       "# Chapter 12: DIVERSION HEADWORKS"
	   ]
	},
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 12.10: EX12_10.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"\n",
"\n",
"//example 12.10\n",
"//calculate critical exit gradient and factor of safety of system\n",
"clc;funcprot(0);\n",
"//given\n",
"b=60;       //length of floor\n",
"H=6;        //static head of weir\n",
"d=6;        //downstream depth of pile\n",
"n=0.3;      //porousity of soil particles\n",
"G=2.7;      //relative density of soil particles\n",
"\n",
"alpha=b/d;\n",
"lambda=(1+(1+alpha^2)^0.5)/2;\n",
"Ge=H/(d*%pi*(lambda)^0.5);\n",
"e=n/(1-n);\n",
"chg=(G-1)/(1+e);\n",
"f=chg/Ge;\n",
"f=round(f*100)/100;\n",
"mprintf('critical exit gradient=%f.\nfactor of safety of system=%f.',chg,f);"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 12.11: EX12_11.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"\n",
"\n",
"//example 12.11\n",
"//design a vertical drop weir on Bligh's theory\n",
"//test floor by Khosla's theory\n",
"clc;funcprot(0);\n",
"//given\n",
"Q=2800;                    //maximum flood discharge\n",
"hfl=285;                   //H.F.L before construction\n",
"hw=278;                    //minimum water level\n",
"fsl=284;                   //F.S.L of canal\n",
"c=12;                      //coefficient of creep\n",
"flux=1;                    //allowable afflux\n",
"Ge=1/6;                    //permissible exit gradient\n",
"rho=2.24;                  //specific gravity of concrete\n",
"\n",
"//Hydraulic calculation\n",
"L=4.75*Q^0.5;\n",
"q=Q/L;\n",
"q=round(q*10)/10;\n",
"mprintf('Hydraulic calculation:');\n",
"mprintf('\ndischarge per unit width of river=%f cumecs.',q);\n",
"f=1;\n",
"R=1.35*(q^2/f)^(1/3);\n",
"R=round(R*100)/100;\n",
"mprintf('\nregime scour depth=%f m.',R);\n",
"V=q/R;                   //regime velocity\n",
"vh=V^2/(2*9.81);        //velocity head\n",
"l_down=hfl+vh;\n",
"l_up=l_down+flux;\n",
"hfl_up=l_up-vh;\n",
"hfl_down=hfl-0.5;\n",
"hfl_down=round(hfl_down*100)/100;\n",
"mprintf('\nactual d/s H.F.L allowing 0.5 m for retrogation=%f m.',hfl_down);\n",
"K=(q/1.7)^(2/3);\n",
"cl=l_up-K;               //crest level\n",
"cl=round(cl*100)/100;\n",
"mprintf('\ncrest level=%f m.',cl);\n",
"pl=fsl+0.5;              //pond level\n",
"s=hfl_down-cl;                //heigth of shutter\n",
"mprintf('\nheigth of shutter=%f m.',s);\n",
"rl_up_pile=hfl_up-1.5*R;    //R.L of bottom u/s pile\n",
"d_up_cut=hw-276;           //depth of upstream cut-off\n",
"mprintf('\ndepth of upstream cut-off=%f m.',d_up_cut);\n",
"mprintf('\n provide concrete cut off 2 m depth.');\n",
"rl_bot_ds=hfl_down-2*R;\n",
"Hs=hfl_down-hw;            //seepage head\n",
"Hc=cl-hw;                  //heigth of crest\n",
"mprintf('\nR.L of gates crest=%f m.',Hs);\n",
"mprintf('\nHeigth of crest=%f m.',Hc);\n",
"\n",
"//design of weir wall\n",
"d=hfl_up-cl;\n",
"a=d/(rho)^0.5;\n",
"a=3*d/(2*rho);            //from sliding consideration\n",
"a=s+1;                    //from practical consieration\n",
"a=a+1;\n",
"mprintf('\n\ndesign of weir wall:')\n",
"mprintf('\nprovide top width of %i m.',a);\n",
"Mo=9.81*Hs^3/6;                //overtirning moment\n",
"//equating the moment of resistance to overturning moment and putting the values we get\n",
"y=poly([-1.084,0.020,0.039],'x','c');\n",
"b=roots(y);\n",
"//we get b= - 5.5347261 and 5.0219056\n",
"//taking\n",
"b=5;\n",
"//when weir is submerged\n",
"C=0.58;\n",
"d=(q^2/((2*C/3)^2*2*9.81))^(1/3);\n",
"Mo=9.81*d*Hc^2/2;\n",
"//from equation of moment of resistence we get\n",
"y=poly([-77.55,3,1],'x','c');\n",
"b=roots(y);\n",
"//we get b= - 10.433085 and 7.4330846\n",
"//taking\n",
"b=8;\n",
"mprintf('\nbottom width=%i m.',b);\n",
"\n",
"//design of impervious and pervious aprons\n",
"C=12;\n",
"L=C*Hs;\n",
"mprintf('\n\ndesign of impervious and pervious aprons:');\n",
"mprintf('\ntotal creep length=%i m.',L);\n",
"l1=2.21*C*(Hs/13)^0.5;\n",
"l1_=l1+1;\n",
"mprintf('\nlength of downstream impervious apron=%i m.',l1_);\n",
"d1=hw-276;\n",
"d2=hw-271;\n",
"l2=L-l1-(b+2*d1+2*d2);\n",
"mprintf('\nlength of upstream impervious apron=%i m.',l2);\n",
"l3=18*C*(Hs*q/975)^0.5;\n",
"mprintf('\ntotal length of d/s apron=%i m.',l3);                //calculation is wrong in book\n",
"l=l3-l1;\n",
"le=l/2;\n",
"le=round(le*100)/100;\n",
"mprintf('\nprovide filter of length %f m. and launching apron of length %f m.',le,le);\n",
"t=d2*10^0.5/le;\n",
"mprintf('\nthickness of launching apron in horizontal position=%f m.',t);\n",
"mprintf('\nprovide launching apron of thickness 1.5 m.');\n",
"T=2*d1;\n",
"V=d1*10^0.5;\n",
"ta=V/T;\n",
"ta=round(ta*10)/10;\n",
"mprintf('\nthickness of apron in horizontal position=%f m.',ta);\n",
"Hr=Hs-Hs*(4+33+8)/L;\n",
"t=4*Hr/(3*(rho-1));\n",
"t=round(t*10)/10;\n",
"mprintf('\nprovide thickness of %f m from d/s of weir wall to point 6 m from it.',t);\n",
"Hr=Hs-Hs*(4+33+8+6)/L;\n",
"t=4*Hr/(3*(rho-1));\n",
"t=round(t*10)/10;\n",
"mprintf('\nprovide thickness of %f m from 6 m to 12 m from d/s end of weir wall.',t);\n",
"Hr=Hs-Hs*(4+33+8+12)/L;\n",
"t=4*Hr/(3*(rho-1));\n",
"t=round(t*10)/10;\n",
"mprintf('\nprovide thickness of %f m for rest of length of weir floor.',t);\n",
"\n",
"//check by khosla's theory\n",
"b=33+8+19;            //total horizontal length of impervious floor\n",
"d=7;                  //depth of downstream pile\n",
"alpha=b/d;\n",
"n=0.14;                //n=1/%pi*(lambda)^0.5;\n",
"Ge=Hs*n/d;\n",
"mprintf('\n\ncheck by Khosla theory:');\n",
"mprintf('\nexit gradient=%f. < 1/6\n hence safe',Ge);\n",
"alpha_=d/b;\n",
"fic1=0.83;fid1=0.88;\n",
"corec_c1=(fid1-fic1)*100/2;\n",
"bdash=b;\n",
"d=2;D=7;\n",
"C1=19*(D/bdash)^0.5*(d+D)/b;\n",
"fic1=fic1*100+corec_c1+C1;\n",
"Pc=Hs*fic1/100;                        //pressure head at C\n",
"alpha_=d/b;\n",
"fie2=0.31;fid2=0.21;\n",
"corec_e1=(fie2-fid2)*1.7*100/7;\n",
"bdash=b;\n",
"d=7;D=2;\n",
"C1=19*(D/bdash)^0.5*(d+D)/b;\n",
"fie2=fie2*100-corec_e1-C1;             //in book 3.53 value is wrong\n",
"Pe=Hs*fie2/100;                         //pressue head at E\n",
"//assuming linear variation of pressure for intermediate points\n",
"Pa=Pc-(Pc-Pe)*(33+8)/b;\n",
"t=Pa/1.24;\n",
"Pa=round(Pa*100)/100;\n",
"t=round(t*100)/100;\n",
"mprintf('\npressure at d/s of weir wall=%f m.',Pa);\n",
"mprintf('\nthickness at d/s of weir wall=%f m. < thickness by Bligh theory;\nhence safe.',t);\n",
"Pb=Pc-(Pc-Pe)*(33+8+6)/b;\n",
"t=Pb/1.24;\n",
"Pa=round(Pa*100)/100;\n",
"t=round(t*100)/100;\n",
"mprintf('\npressure at 6 m from d/s of weir wall=%f m.',Pb);\n",
"mprintf('\nthickness at 6m from d/s of weir wall=%f m. < thickness by Bligh theory;\nhence safe.',t);\n",
"Pc=Pc-(Pc-Pe)*(33+8+12)/b;\n",
"t=Pc/1.24;\n",
"Pa=round(Pa*100)/100;\n",
"t=round(t*100)/100;\n",
"mprintf('\npressure at 12 m from d/s of weir wall=%f m.',Pc);\n",
"mprintf('\nthickness at 12m from d/s of weir wall=%f m. > thickness by Bligh theory;\nhence unsafe.',t);\n",
"mprintf('\nhence increase th ethickness to 1.9 m for a length of 7 m of impervious floor.');"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 12.12: EX12_12.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"\n",
"\n",
"//example 12.12\n",
"//calculate\n",
"//number of gates required for the barrage\n",
"//head regulator if each gate has 10 m clear span(neglect end contractions and approach velocity)\n",
"//length and R.L of basin floor if silting basin is provided downstream of barrage\n",
"clc;funcprot(0);\n",
"//given\n",
"Lmax=212;           //maximum reservior level\n",
"Lp=211;             //pond level\n",
"hfl=210;            //downstream high flood level in the river\n",
"Qmax=3500;          //maximum design flood discharge\n",
"Lcrest=207;         //crest level of the barrage\n",
"Lcrest_r=208;       //crest level of head regulator\n",
"Cd=2.1;             //coefficient of discharge for barrage\n",
"Cd_r=1.5;           //coefficient of discharge for head regulator\n",
"rbl=205;            //river bed level\n",
"Q=500;              //design discharge of main canal\n",
"\n",
"//design of water way for barrage during flood\n",
"H=Lmax-Lcrest;\n",
"L=Qmax/(Cd*H^1.5);\n",
"//which gives L=149.07.\n",
"//provide 15 bays of 10m clear span\n",
"mprintf('nunmber of gates for the barrage=15.');\n",
"\n",
"//design of waterway for canal head regulator\n",
"H=Lp-Lcrest_r;\n",
"L1=Q/(Cd_r*H^1.5);\n",
"//which gives L=64.2\n",
"//hence provide 7 bays of 10 m each\n",
"mprintf('\n\nnunmber of gates for the head regulator=7.');\n",
"\n",
"//design of stilling basin\n",
"Hl=Lmax-hfl;\n",
"q=Qmax/L;\n",
"yc=(q^2/9.81)^(1/3);\n",
"Z=Hl/yc;\n",
"//since Z<1\n",
"Y=1+0.93556*Z^0.368;\n",
"y2=Y*yc;\n",
"Lc=5*y2;\n",
"Lc=round(Lc*10)/10;\n",
"mprintf('\n\nLength of cistern=%f m.',Lc);\n",
"Ef2=yc*(Y+1/(2*Y^2));\n",
"j=hfl-Ef2;\n",
"j=round(j*10)/10;\n",
"mprintf('\nR.L of cistern=%f m.',j);\n",
"\n",
""
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 12.1: EX12_1.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"\n",
"\n",
"//example 12.1\n",
"//calculate average hydraulic gradient\n",
"//uplift presuures and thickness of floor at 6m, 12m and 18m from u/s\n",
"clc;funcprot(0);\n",
"//given\n",
"rho=2.24;             //relative density of material\n",
"gamma_w=9.81;         //unit weigth of water\n",
"L=22;                 //total length\n",
"lc=(2*6)+L+(2*8);     //length of creep\n",
"hg=4/lc;              //hydraulic gradient\n",
"mprintf('avearge hydraulic gradient=%f.',hg);\n",
"//at 6 m from u/s\n",
"x=6;\n",
"lg=(6*2)+x;\n",
"h1=4*(1-lg/50);       //unbalanced head\n",
"up=gamma_w*h1;\n",
"t=4*h1/(3*(rho-1));\n",
"up=round(up*100)/100;\n",
"t=round(t*100)/100;\n",
"mprintf('\n\nuplift at 6 m from u/s=%f kN/square metre.',up);\n",
"mprintf('\nthickness at 6 m from u/s=%f m.',t);\n",
"\n",
"//at 12 m from u/s\n",
"x=12;\n",
"lg=(6*2)+x;\n",
"h1=4*(1-lg/50);       //unbalanced head\n",
"up=gamma_w*h1;\n",
"t=4*h1/(3*(rho-1));\n",
"up=round(up*100)/100;\n",
"t=round(t*100)/100;\n",
"mprintf('\n\nuplift at 12 m from u/s=%f kN/square metre.',up);\n",
"mprintf('\nthickness at 12 m from u/s=%f m.',t);\n",
"\n",
"//at 18m from u/s\n",
"x=18;\n",
"lg=(6*2)+x;\n",
"h1=4*(1-lg/50);       //unbalanced head\n",
"up=gamma_w*h1;\n",
"t=4*h1/(3*(rho-1));\n",
"up=round(up*10)/10;\n",
"t=round(t*100)/100;\n",
"mprintf('\n\nuplift at 18 m from u/s=%f kN/square metre.',up);\n",
"mprintf('\nthickness at 18 m from u/s=%f m.',t);\n",
"\n",
"\n",
""
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 12.2: EX12_2.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"\n",
"\n",
"//example 12.2\n",
"//calculate uplift pressure and exit gradient\n",
"//check whether section is safe against overturning and piping\n",
"clc;funcprot(0);\n",
"//given\n",
"b=54;            //width of section\n",
"D1D2=16;         //distance between points D1 and D2\n",
"D2D3=37;         //distance between points D2 and D3\n",
"\n",
"//first pipe line\n",
"//taking data from figure\n",
"d=105-97;\n",
"b1=0.5;\n",
"alpha=b/d;\n",
"//from the curves we get\n",
"fic1=0.665;\n",
"fid1=0.76;\n",
"fie1=1;\n",
"t=105-104;                      //floor thickness\n",
"corec=(fid1-fic1)*100*t/d;          //correction for floor thickness\n",
"//for pile no. 2\n",
"D=104-97;\n",
"d=104-97;\n",
"bdash=16;\n",
"C=19*(D/bdash)^0.5*(d+D)/b;    //correction for pile no. 2\n",
"fic1=fic1*100+corec+C;         //corrected pressures\n",
"\n",
"//intermedite pipe line\n",
"d=105-97;\n",
"b1=16.5;\n",
"alpha=b/d;\n",
"r=b1/b;               //ratio b1/b\n",
"//from the curves we get\n",
"fic2=0.52;\n",
"fie2=0.725;\n",
"fid2=0.615;\n",
"corec_c1=(fid2-fic2)*100*t/d;\n",
"corec_e1=(fie2-fid2)*100/d;\n",
"\n",
"//for pile no. 1\n",
"C1=C;\n",
"d=104-97;\n",
"bdash=37;\n",
"D=104-95;\n",
"C2=19*(D/bdash)^0.5*(d+D)/b;\n",
"//correction due to slope\n",
"corec_e2=3.3;                //from table 12.4\n",
"//correction is negative due to upwrd slope\n",
"l=4;               //horizontal length of slope\n",
"corec_c2=corec_e2*l/bdash;\n",
"\n",
"fie2=fie2*100-corec_e1-corec_e2;\n",
"fic2=fic2*100+corec_c1+C2-corec_c2;\n",
"\n",
"//pile no. 3 at d/s end\n",
"d=103.5-95;\n",
"alpha_=d/b;\n",
"//for curves\n",
"fie3=0.35;fid3=0.242;\n",
"corec_t=(fie3-fid3)*100*(103.5-102)/d;\n",
"\n",
"//correction for interference at pile no. 2\n",
"d=102-95;\n",
"D=102-97;\n",
"C3=19*(D/bdash)^0.5*(d+D)/b;\n",
"fie3=fie3*100-corec_t-C3;\n",
"\n",
"point=['C1' 'C2' 'E2' 'E3'];            //Point\n",
"P=[fic1 fic2 fie2 fie3];                //pressure percent\n",
"P_=[3.55 2.78 3.39 1.58];               //pressure head\n",
"mprintf('Points         Pressure percent        Pressure head');\n",
"for i=1:4\n",
"    P(i)=round(P(i)*10)/10;\n",
"    mprintf('\n%s                %f               %f',point(i),P(i),P_(i));\n",
"end\n",
"\n",
"//check for floor thickness\n",
"Pa=P_(2)-((P_(2)-P_(4))*6.5/37);\n",
"Pb=P_(2)-((P_(2)-P_(4))*24/37);\n",
"Pc=P_(2)-((P_(2)-P_(4))*30/37);\n",
"rho=2.24;                              //specific gravity of concrete\n",
"ta=Pa/(rho-1);\n",
"tb=Pb/(rho-1);\n",
"tc=Pc/(rho-1);\n",
"ta=round(ta*100)/100;\n",
"tb=round(tb*100)/100;\n",
"tc=round(tc*100)/100;\n",
"mprintf('\n\nThickness required at A=%f m.',ta);\n",
"mprintf('\nThickness required at B=%f m.',tb);\n",
"mprintf('\nThickness required at C=%f m.',tc);\n",
"t=103.5-102;\n",
"mprintf('\nThickness provided=%f m.',t);\n",
"mprintf('\nFloor thickness at B and C are adequate');\n",
"\n",
"//exit gradient\n",
"H=108.5-103.5;               //seepage head\n",
"d=103.5-95;                 //depth cut-off\n",
"//from exit gradient curve\n",
"alpha=6.35;\n",
"lambda=(1+(1+alpha^2)^0.5)/2;\n",
"Ge=H/(d*%pi*lambda^0.5);\n",
"mprintf('\n\nexit gradient=%f.',Ge);\n",
"mprintf('\n it is less than permissible exit gradient  < 1/6\nHence safe..');"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 12.3: EX12_3.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"\n",
"\n",
"//example 12.3\n",
"//design a vertical drop weir on Bligh's theory\n",
"//test floor by Khosla's theory\n",
"clc;funcprot(0);\n",
"//given\n",
"Q=2800;                    //maximum flood discharge\n",
"hfl=285;                   //H.F.L before construction\n",
"hw=278;                    //minimum water level\n",
"fsl=284;                   //F.S.L of canal\n",
"c=12;                      //coefficient of creep\n",
"flux=1;                    //allowable afflux\n",
"Ge=1/6;                    //permissible exit gradient\n",
"rho=2.24;                  //specific gravity of concrete\n",
"\n",
"//Hydraulic calculation\n",
"L=4.75*Q^0.5;\n",
"q=Q/L;\n",
"q=round(q*10)/10;\n",
"mprintf('Hydraulic calculation:');\n",
"mprintf('\ndischarge per unit width of river=%f cumecs.',q);\n",
"f=1;\n",
"R=1.35*(q^2/f)^(1/3);\n",
"R=round(R*100)/100;\n",
"mprintf('\nregime scour depth=%f m.',R);\n",
"V=q/R;                   //regime velocity\n",
"vh=V^2/(2*9.81);        //velocity head\n",
"l_down=hfl+vh;\n",
"l_up=l_down+flux;\n",
"hfl_up=l_up-vh;\n",
"hfl_down=hfl-0.5;\n",
"hfl_down=round(hfl_down*100)/100;\n",
"mprintf('\nactual d/s H.F.L allowing 0.5 m for retrogation=%f m.',hfl_down);\n",
"K=(q/1.7)^(2/3);\n",
"cl=l_up-K;               //crest level\n",
"cl=round(cl*100)/100;\n",
"mprintf('\ncrest level=%f m.',cl);\n",
"pl=fsl+0.5;              //pond level\n",
"s=hfl_down-cl;                //heigth of shutter\n",
"mprintf('\nheigth of shutter=%f m.',s);\n",
"rl_up_pile=hfl_up-1.5*R;    //R.L of bottom u/s pile\n",
"d_up_cut=hw-276;           //depth of upstream cut-off\n",
"mprintf('\ndepth of upstream cut-off=%f m.',d_up_cut);\n",
"mprintf('\n provide concrete cut off 2 m depth.');\n",
"rl_bot_ds=hfl_down-2*R;\n",
"Hs=hfl_down-hw;            //seepage head\n",
"Hc=cl-hw;                  //heigth of crest\n",
"mprintf('\nR.L of gates crest=%f m.',Hs);\n",
"mprintf('\nHeigth of crest=%f m.',Hc);\n",
"\n",
"//design of weir wall\n",
"d=hfl_up-cl;\n",
"a=d/(rho)^0.5;\n",
"a=3*d/(2*rho);            //from sliding consideration\n",
"a=s+1;                    //from practical consieration\n",
"a=a+1;\n",
"mprintf('\n\ndesign of weir wall:')\n",
"mprintf('\nprovide top width of %i m.',a);\n",
"Mo=9.81*Hs^3/6;                //overtirning moment\n",
"//equating the moment of resistance to overturning moment and putting the values we get\n",
"y=poly([-1.084,0.020,0.039],'x','c');\n",
"b=roots(y);\n",
"//we get b= - 5.5347261 and 5.0219056\n",
"//taking\n",
"b=5;\n",
"//when weir is submerged\n",
"C=0.58;\n",
"d=(q^2/((2*C/3)^2*2*9.81))^(1/3);\n",
"Mo=9.81*d*Hc^2/2;\n",
"//from equation of moment of resistence we get\n",
"y=poly([-77.55,3,1],'x','c');\n",
"b=roots(y);\n",
"//we get b= - 10.433085 and 7.4330846\n",
"//taking\n",
"b=8;\n",
"mprintf('\nbottom width=%i m.',b);\n",
"\n",
"//design of impervious and pervious aprons\n",
"C=12;\n",
"L=C*Hs;\n",
"mprintf('\n\ndesign of impervious and pervious aprons:');\n",
"mprintf('\ntotal creep length=%i m.',L);\n",
"l1=2.21*C*(Hs/13)^0.5;\n",
"l1_=l1+1;\n",
"mprintf('\nlength of downstream impervious apron=%i m.',l1_);\n",
"d1=hw-276;\n",
"d2=hw-271;\n",
"l2=L-l1-(b+2*d1+2*d2);\n",
"mprintf('\nlength of upstream impervious apron=%i m.',l2);\n",
"l3=18*C*(Hs*q/975)^0.5;\n",
"mprintf('\ntotal length of d/s apron=%i m.',l3);                //calculation is wrong in book\n",
"l=l3-l1;\n",
"le=l/2;\n",
"le=round(le*100)/100;\n",
"mprintf('\nprovide filter of length %f m. and launching apron of length %f m.',le,le);\n",
"t=d2*10^0.5/le;\n",
"mprintf('\nthickness of launching apron in horizontal position=%f m.',t);\n",
"mprintf('\nprovide launching apron of thickness 1.5 m.');\n",
"T=2*d1;\n",
"V=d1*10^0.5;\n",
"ta=V/T;\n",
"ta=round(ta*10)/10;\n",
"mprintf('\nthickness of apron in horizontal position=%f m.',ta);\n",
"Hr=Hs-Hs*(4+33+8)/L;\n",
"t=4*Hr/(3*(rho-1));\n",
"t=round(t*10)/10;\n",
"mprintf('\nprovide thickness of %f m from d/s of weir wall to point 6 m from it.',t);\n",
"Hr=Hs-Hs*(4+33+8+6)/L;\n",
"t=4*Hr/(3*(rho-1));\n",
"t=round(t*10)/10;\n",
"mprintf('\nprovide thickness of %f m from 6 m to 12 m from d/s end of weir wall.',t);\n",
"Hr=Hs-Hs*(4+33+8+12)/L;\n",
"t=4*Hr/(3*(rho-1));\n",
"t=round(t*10)/10;\n",
"mprintf('\nprovide thickness of %f m for rest of length of weir floor.',t);\n",
"\n",
"//check by khosla's theory\n",
"b=33+8+19;            //total horizontal length of impervious floor\n",
"d=7;                  //depth of downstream pile\n",
"alpha=b/d;\n",
"n=0.14;                //n=1/%pi*(lambda)^0.5;\n",
"Ge=Hs*n/d;\n",
"mprintf('\n\ncheck by Khosla theory:');\n",
"mprintf('\nexit gradient=%f. < 1/6\n hence safe',Ge);\n",
"alpha_=d/b;\n",
"fic1=0.83;fid1=0.88;\n",
"corec_c1=(fid1-fic1)*100/2;\n",
"bdash=b;\n",
"d=2;D=7;\n",
"C1=19*(D/bdash)^0.5*(d+D)/b;\n",
"fic1=fic1*100+corec_c1+C1;\n",
"Pc=Hs*fic1/100;                        //pressure head at C\n",
"alpha_=d/b;\n",
"fie2=0.31;fid2=0.21;\n",
"corec_e1=(fie2-fid2)*1.7*100/7;\n",
"bdash=b;\n",
"d=7;D=2;\n",
"C1=19*(D/bdash)^0.5*(d+D)/b;\n",
"fie2=fie2*100-corec_e1-C1;             //in book 3.53 value is wrong\n",
"Pe=Hs*fie2/100;                         //pressue head at E\n",
"//assuming linear variation of pressure for intermediate points\n",
"Pa=Pc-(Pc-Pe)*(33+8)/b;\n",
"t=Pa/1.24;\n",
"Pa=round(Pa*100)/100;\n",
"t=round(t*100)/100;\n",
"mprintf('\npressure at d/s of weir wall=%f m.',Pa);\n",
"mprintf('\nthickness at d/s of weir wall=%f m. < thickness by Bligh theory;\nhence safe.',t);\n",
"Pb=Pc-(Pc-Pe)*(33+8+6)/b;\n",
"t=Pb/1.24;\n",
"Pa=round(Pa*100)/100;\n",
"t=round(t*100)/100;\n",
"mprintf('\npressure at 6 m from d/s of weir wall=%f m.',Pb);\n",
"mprintf('\nthickness at 6m from d/s of weir wall=%f m. < thickness by Bligh theory;\nhence safe.',t);\n",
"Pc=Pc-(Pc-Pe)*(33+8+12)/b;\n",
"t=Pc/1.24;\n",
"Pa=round(Pa*100)/100;\n",
"t=round(t*100)/100;\n",
"mprintf('\npressure at 12 m from d/s of weir wall=%f m.',Pc);\n",
"mprintf('\nthickness at 12m from d/s of weir wall=%f m. > thickness by Bligh theory;\nhence unsafe.',t);\n",
"mprintf('\nhence increase th ethickness to 1.9 m for a length of 7 m of impervious floor.');"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 12.4: EX12_4.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"\n",
"\n",
"//example 12.4\n",
"//design a slopeing glacis\n",
"clc;funcprot(0);\n",
"//given\n",
"q=10;                     //maximum discharge intensity on weir crest\n",
"hfl=255;                  //H.F.L before construction of weir\n",
"rb=249.5;                 //R.L of river bed\n",
"pl=254;                   //pond level\n",
"s=1;                      //heigth of crest shutter\n",
"dhw=251.5;                //anticipated downstream water level in river when water is dischrging with pond level upstream\n",
"br=0.5;                   //bed retrogression\n",
"f=0.9;                    //Laecey silt factor\n",
"Ge=1/7;                   //permissible exit gradient\n",
"flux=1;                   //permissible afflux\n",
"\n",
"cl=pl-s;                   //crest level\n",
"mprintf('crest level=%f m.',cl);\n",
"K=(q/1.7)^(2/3);\n",
"tel_up=cl+K;\n",
"tel_up=round(tel_up*100)/100;\n",
"mprintf('\nelevation of u/s T.E.L=%f m.',tel_up);\n",
"R=1.35*(q^2/f)^(1/3);\n",
"R=round(R*10)/10;\n",
"mprintf('\nregime scour depth=%f m.',R);\n",
"V=q/R;                     //regime velocity\n",
"vh=V^2/(2*9.81);           //velocity head\n",
"hfl_up=tel_up-vh;\n",
"tel_down=hfl+vh;\n",
"flux=hfl_up-hfl;\n",
"flux=round(flux*100)/100;\n",
"mprintf('\nafflux=%f. which is near to permissible',flux);\n",
"hfl_down=hfl-br;             //downstream H.F.L after retrogression\n",
"tel_down=tel_down-br;        //downstream T.F.L after retrogression\n",
"Hl=tel_up-tel_down;          //loss of head in flood\n",
"Hl=round(Hl*100)/100;\n",
"mprintf('\nloss of head in at high flood=%f m.',Hl);\n",
"K=pl-cl;              //head over crest\n",
"q_=1.7*(K)^1.5;\n",
"Hl_=pl-dhw;             //loss of head\n",
"mprintf('\nloss of head=%f m.',Hl_);\n",
"Ef2=4.3;\n",
"Ef2_=1.7;              //from Blench curve\n",
"jump=tel_down-Ef2;\n",
"jump_=251.5-Ef2_;      //level at which jump will form\n",
"Ef1=Ef2+Hl;\n",
"Ef1_=Ef2_+Hl_;\n",
"D1=1.03;\n",
"D1_=0.15;                //calculated from Ef1 and Ef1_ respectively\n",
"D2=3.96;D2_=1.68;       //calculated from Ef2 and Ef2_ respectively\n",
"hj=D2-D1;\n",
"hj_=D2_-D1_;            //heigth of jump\n",
"concrete=5*hj;\n",
"concrete_=5*hj_;         //length of concrete floor\n",
"mprintf('\n\nHydraulic jump calculation:');\n",
"mprintf('\nheigth of jump for high flood condition=%f m.',hj);\n",
"mprintf('\nlength of concrete floor for high flood condition=%f m.',concrete);\n",
"mprintf('\nheigth of jump for pond level condition=%f m.',hj_);\n",
"mprintf('\nlength of concrete floor for high pond level condition=%f m.',concrete_);\n",
"\n",
"cw=2;                    //crets width\n",
"us=2;                    //upstream slope\n",
"ds=3;                    //downstream slope\n",
"l=15;\n",
"mprintf('\n\n upstream slope of glacis=%i:1.',us);\n",
"mprintf('\ndownstream slope of glacis=%i:1.',ds);\n",
"mprintf('\nhorizontal length of floor beyond the toe=%i m..',l);\n",
"\n",
"R=6.5;\n",
"sh_up=hfl_up-1.5*R;\n",
"sh_down=hfl_down-2*R;\n",
"sh_up=round(sh_up*100)/100;\n",
"mprintf('\nR.L of bottom of upstream sheet pile=%f m.',sh_up);\n",
"mprintf('\nR.L of downstream sheet pile=%f m.',sh_down);\n",
"mprintf('\nprovide intermediate sheet pile at d/s toe of glacis.');\n",
"Hs=pl-249.6;                       //maximum percolation head\n",
"d=249.6-sh_down;                   //depth of d/s cut-off\n",
"n=Ge*d/Hs;                          //n=1/(%pi*lambda^0.5);\n",
"//from khosla exit gradient curve\n",
"alpha=1.5;\n",
"b=alpha*d;\n",
"mprintf('\n\nlength of impervious floor=%f m.',b);\n",
"fl=(2*(253-249.5))+2+(3*(253-249.6))+15;\n",
"us=36-fl;\n",
"mprintf('\nlength of floor already provide=%f m.',fl);\n",
"mprintf('\nwhich is more than required from permissible exit gradient.\nno upstream floor is required.');\n",
"mprintf('\nprovide %f m upstream floor so that total length becomes 36 m.',us);\n",
"alpha_1=0.089; \n",
"alpha_2=0.225;            //alpha_=1/alpha\n",
"b1=21;\n",
"alpha=4.44;\n",
"mprintf('\n\nPressure percent at points:');\n",
"point=['C1' 'D1' 'C2' 'E2' 'D2' 'D3' 'E3'];\n",
"bc=[72 82 31.5 45.5 58.5 29 44];\n",
"crt=[3.1 0 3.5 0 -3.2 0 0 -3.6];\n",
"crs=[0 0 0 0 2.3 0 0 0];\n",
"cri=[3.7 0 6.4 0 -2.4 0 -6.4];\n",
"mprintf('\nPoints       Before correction            After correction');\n",
"for i=1:7\n",
"    after(i)=bc(i)+crt(i)+crs(i)+cri(i);\n",
"    mprintf('\n%s                   %i                       %f',point(i),bc(i),after(i));\n",
"end\n",
"Hs=254-249.6;               //no flow condition\n",
"Hs_=256.13-254.5;           //high flood condition\n",
"Hs__=254-251.5;             //flow at pond level\n",
"mprintf('\n\nelevation of subsoil H.G above datum:');\n",
"mprintf('\nno flow condition:');\n",
"fie1=1*Hs;\n",
"fid1=0.82*Hs;\n",
"fic1=0.788*Hs;\n",
"fie2=0.552*Hs;\n",
"fid2=0.455*Hs;\n",
"fic2=0.414*Hs;\n",
"fie3=0.34*Hs;\n",
"fid3=0.29*Hs;\n",
"fic3=0;\n",
"fie1=round(fie1*100)/100;fid1=round(fid1*100)/100;fic1=round(fic1*100)/100;\n",
"fie2=round(fie2*100)/100;fid2=round(fid2*100)/100;fic2=round(fic2*100)/100;\n",
"fie3=round(fie3*100)/100;fid3=round(fid3*100)/100;fic3=round(fic3*100)/100;\n",
"mprintf('\nfie1=%f.;fid1=%f.;fic1=%f.\nfie2=%f.;fid2=%f.;fic2=%f.\nfie3=%f.;fid3=%f.;fic3=%f.',fie1,fid1,fic1,fie2,fid2,fic2,fie3,fid3,fic3);\n",
"mprintf('\nhigh flood condition:');\n",
"fie1=1*Hs_;\n",
"fid1=0.82*Hs_;\n",
"fic1=0.788*Hs_;\n",
"fie2=0.552*Hs_;\n",
"fid2=0.455*Hs_;\n",
"fic2=0.414*Hs_;\n",
"fie3=0.34*Hs_;\n",
"fid3=0.29*Hs_;\n",
"fic3=0;\n",
"fie1=round(fie1*100)/100;fid1=round(fid1*100)/100;fic1=round(fic1*100)/100;\n",
"fie2=round(fie2*100)/100;fid2=round(fid2*100)/100;fic2=round(fic2*100)/100;\n",
"fie3=round(fie3*100)/100;fid3=round(fid3*100)/100;fic3=round(fic3*100)/100;\n",
"mprintf('\nfie1=%f.;fid1=%f.;fic1=%f.\nfie2=%f.;fid2=%f.;fic2=%f.\nfie3=%f.;fid3=%f.;fic3=%f.',fie1,fid1,fic1,fie2,fid2,fic2,fie3,fid3,fic3);\n",
"mprintf('\nflow at pond level:');\n",
"fie1=1*Hs__;\n",
"fid1=0.82*Hs__;\n",
"fic1=0.788*Hs__;\n",
"fie2=0.552*Hs__;\n",
"fid2=0.455*Hs__;\n",
"fic2=0.414*Hs__;\n",
"fie3=0.34*Hs__;\n",
"fid3=0.29*Hs__;\n",
"fic3=0;\n",
"fie1=round(fie1*100)/100;fid1=round(fid1*100)/100;fic1=round(fic1*100)/100;\n",
"fie2=round(fie2*100)/100;fid2=round(fid2*100)/100;fic2=round(fic2*100)/100;\n",
"fie3=round(fie3*100)/100;fid3=round(fid3*100)/100;fic3=round(fic3*100)/100;\n",
"mprintf('\nfie1=%f.;fid1=%f.;fic1=%f.\nfie2=%f.;fid2=%f.;fic2=%f.\nfie3=%f.;fid3=%f.;fic3=%f.',fie1,fid1,fic1,fie2,fid2,fic2,fie3,fid3,fic3);\n",
"\n",
"mprintf('\n\nPrejump profile:');\n",
"mprintf('\nhigh flood condition:');\n",
"dist=[3 6 8.4];                 //distance\n",
"glacis=[252 251 250.32];        //R.L of glacis\n",
"D1=[1.3 1.15 1.03];\n",
"mprintf('\nEf1              D1');\n",
"for i=1:3\n",
"    Ef1(i)=256.25-glacis(i);\n",
"    mprintf('\n%f         %f',Ef1(i),D1(i));\n",
"end\n",
"mprintf('\npond level flow:');\n",
"dist=[3 6 9 9.6];             //distance\n",
"glacis=[252 251 250 249.9];       //R.Lof glacis\n",
"D1=[0.31 0.23 0.16 0.15];\n",
"mprintf('\nEf1              D1');\n",
"for i=1:4\n",
"    Ef1(i)=254-glacis(i);\n",
"    mprintf('\n%f         %f',Ef1(i),D1(i));\n",
"end\n",
"\n",
"\n",
"rho=2.24;\n",
"Uf=4;                           //unbalanced head for high flood condtion\n",
"Us=2.56;                        //unbalanced static head\n",
"Hf=2*Uf/3;\n",
"t=Hf/(rho-1);\n",
"t=round(t*10)/10;\n",
"mprintf('\n\nfloor thickness at the point of formation of hydraulic jump=%f m.',t);\n",
"Uf=2.9;                           //unbalanced head for high flood condtion\n",
"Us=2.2;                        //unbalanced static head\n",
"Hf=2*Uf/3;\n",
"t=Us/(rho-1);\n",
"t=round(t*10)/10;\n",
"mprintf('\nfloor thickness at the point of formation of hydraulic jump at the pond level condition=%f m.',t);\n",
"P=1.5;                        //pressure head at d/s end of floor\n",
"t=P/(rho-1);\n",
"t=round(t*10)/10;\n",
"mprintf('\n\nfloor thickness at downstream side of sloping glacis=%f m.',t);\n",
"D=rb-sh_up;                 //depth of u/s scour hole above bed level\n",
"a=1.5*D;\n",
"a=round(a*10)/10;\n",
"mprintf('\n\nminimum length of upstream launching apron=%f m.',a);\n",
"mprintf('\nprovide 1.5 m thick apron for length of 5 m.');\n",
"D=249.6-241.5;\n",
"a=1.5*D;\n",
"mprintf('\n\nminimum length of downstream launching apron=%f m.',a);\n",
"mprintf('\nprovide 1.5 m thick apron for length of 12 m.');\n",
""
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 12.5: EX12_5.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"\n",
"\n",
"//example 12.5\n",
"//calculate uplift pressure at the junction of inner faces of pile with weir floor using Khosla theory\n",
"clc;funcprot(0);\n",
"//given\n",
"b=16;       //total length of floor\n",
"d=5;        //depth of downstream pile\n",
"D=4;        //depth of upstream pile\n",
"H=2.5;      //head created by weir\n",
"\n",
"//pressure at E\n",
"alpha=b/d;\n",
"lambda=(1+(1+alpha^2)^0.5)/2;\n",
"fie=acos((lambda-2)/lambda)/%pi;\n",
"C=19*(D/b)^0.5*((d+D)/b);\n",
"fie=fie*100-C;\n",
"P=H*fie/100;\n",
"P=round(P*1000)/1000;\n",
"mprintf('Pressure at E=%f m.',P);\n",
"\n",
"//pressure at C1\n",
"alpha=b/D;\n",
"lambda=(1+(1+alpha^2)^0.5)/2;\n",
"fie=acos((lambda-2)/lambda)/%pi;\n",
"fic=1-fie;            //by principle reversibility of flow\n",
"C=19*(d/b)^0.5*((d+D)/b);\n",
"fic=fic*100+C;\n",
"P=fic*H/100;\n",
"P=round(P*1000)/1000;\n",
"mprintf('\n Pressure at C=%f m.',P);"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 12.6: EX12_6.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"\n",
"\n",
"//example 12.6\n",
"//calculate floor thickness at mid length and at junction with u/s and d/s cut-off walls\n",
"clc;funcprot(0);\n",
"//given\n",
"b=13;         //length of floor\n",
"d=2;          //depth of downstream wall\n",
"D=1.5;       //depth of upstream cut-off\n",
"rho=2.24;     //relative density\n",
"H=1.5;\n",
"\n",
"//at junction of d/s cut-off with floor\n",
"alpha=b/d;\n",
"lambda=(1+(1+alpha^2)^0.5)/2;\n",
"fie=acos((lambda-2)/lambda)/%pi;\n",
"C=19*(D/b)^0.5*((d+D)/b);\n",
"fie=fie*100-C;\n",
"P=H*fie/100;\n",
"t=P/(rho-1);\n",
"t=round(t*10)/10;\n",
"mprintf('floor thickness at junction of d/s cut-off with floor=%f m.',t);\n",
"\n",
"//at junction of u/s cut-off with floor\n",
"alpha=b/D;\n",
"lambda1=(1+(1+alpha^2)^0.5)/2;\n",
"fie=acos((lambda1-2)/lambda1)/%pi;\n",
"fic=1-fie;            //by principle reversibility of flow\n",
"C=19*(D/b)^0.5*((d+D)/b);\n",
"fiec=fic*100+C;\n",
"P=fiec*H/100;\n",
"t=0.3;              //this the uplift will be counter balanced by downward weigth of impounded water\n",
"mprintf('\nfloor thickness at junction of u/s cut-off with floor=%f m.',t);\n",
"\n",
"//at mid-length\n",
"P=(1.08+0.489)/2;            //assuming linear variation\n",
"t=P/(rho-1);\n",
"t=round(t*100)/100;\n",
"mprintf('\nfloor thickness at mid-length=%f m.',t);\n",
"\n",
"//exit gradient\n",
"G=H/(d*%pi*(lambda)^0.5);\n",
"G=round(G*1000)/1000;\n",
"//since G<0.18\n",
"mprintf('\n G=%f. <0.18./nfloor is safe against failure by piping.',G);"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 12.7: EX12_7.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"\n",
"\n",
"//example12.7\n",
"//calculate heigth of weir to be built\n",
"clc;funcprot(0);\n",
"//given\n",
"B=30;            //stream width\n",
"D=3;             //stream depth\n",
"V=1.25;          //mean velocity\n",
"Cd=0.95;         //discharge coefficient\n",
"Q=B*D*V;\n",
"C=2*Cd*(2*9.81)^0.5/3;\n",
"x=4-(Q/(C*B))^(2/3);\n",
"x=round(x*1000)/1000;\n",
"mprintf('heigth of weir to be built=%f m.',x);"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 12.8: EX12_8.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"\n",
"\n",
"//example 12.8\n",
"//calculate uplift pressure at two cut-off\n",
"clc;funcprot(0);\n",
"//given\n",
"b=50;       //length of floor\n",
"d=8;        //depth of downstream pile\n",
"D=8;        //depth of upstream pile\n",
"H=5;        //effective head \n",
"tu=1;        //floor thickness at upstream\n",
"td=2;        //floor thickness at downstream\n",
"\n",
"//downstream cut-off\n",
"alpha=b/d;\n",
"lambda=(1+(1+alpha^2)^0.5)/2;\n",
"fie=acos((lambda-2)/lambda)/%pi;\n",
"fid=acos((lambda-1)/lambda)/%pi;\n",
"Ct=(fie-fid)*td/d;\n",
"C=19*(D/b)^0.5*((d+D)/b);\n",
"fie=fie*100-C-Ct*100;\n",
"P=H*fie/100;\n",
"P=round(P*100)/100;\n",
"mprintf('Pressure at downstream cut-off=%f m.',P);\n",
"\n",
"//upstream cut-off\n",
"fie=acos((lambda-2)/lambda)/%pi;\n",
"fid=acos((lambda-1)/lambda)/%pi;\n",
"fic1=1-fie;\n",
"fid1=1-fid;\n",
"Ct=(fic1-fid1)*td/d;\n",
"C=-19*(D/b)^0.5*((d+D)/b);\n",
"fic1=fic1*100-C-Ct*100;\n",
"P=H*fic1/100;\n",
"P=round(P*100)/100;\n",
"mprintf('\nPressure at upstream cut-off=%f m.',P);\n",
"G=H/(d*%pi*(lambda)^0.5);\n",
"mprintf('\nExit Gradient=%f.',G);\n",
"\n",
""
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 12.9: EX12_9.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"\n",
"\n",
"//example 12.9\n",
"//calculate depth of downstream cut-off\n",
"clc;funcprot(0);\n",
"//given\n",
"Q=1000;        //discharge of river\n",
"L=256;         //crest length of diversion\n",
"f=1.1;         //silt factor\n",
"seg=1/6;       //safe exit gradient\n",
"hfl=103;       //high flood level\n",
"cf=100;        //reduced level of downstream concrete floor\n",
"H=2.4;         //maximum static head of weir\n",
"b=40;          //length of concrete floor\n",
"\n",
"q=Q/L;\n",
"R=1.35*(q^2/f)^(1/3);\n",
"rld=hfl-1.5*R;\n",
"d=cf-rld;\n",
"d=round(d*100)/100;\n",
"mprintf('depth of downstream cut-off=%f m.',d);\n",
"\n",
"alpha=b/d;\n",
"lambda=(1+(1+alpha^2)^0.5)/2;\n",
"G=H/(d*%pi*(lambda)^0.5);\n",
"//since G<seg\n",
"mprintf('\n G=%f. <1/6./nfloor is safe against failure by piping.',G);\n",
""
   ]
   }
],
"metadata": {
		  "kernelspec": {
		   "display_name": "Scilab",
		   "language": "scilab",
		   "name": "scilab"
		  },
		  "language_info": {
		   "file_extension": ".sce",
		   "help_links": [
			{
			 "text": "MetaKernel Magics",
			 "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
			}
		   ],
		   "mimetype": "text/x-octave",
		   "name": "scilab",
		   "version": "0.7.1"
		  }
		 },
		 "nbformat": 4,
		 "nbformat_minor": 0
}