1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 11: SPILLWAYS"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 11.1: EX11_1.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"\n",
"\n",
"//example 11.1\n",
"//calculate compute the dynamic force on curved section\n",
"clc;funcprot(0);\n",
"//given\n",
"h=1.2; //head of water\n",
"Cd=2.2; //coefficient of discharge\n",
"rho=1; //density of water\n",
"gamma_w=9.81; //unit weigth of water\n",
"\n",
"q=Cd*h^1.5;\n",
"\n",
"//applying bernaulli's equation at u/s water surface at section A and B\n",
"//solving it by error and trial method we get\n",
"v1=13.7;v2=14.7;\n",
"d1=0.212;d2=0.197;\n",
"\n",
"F1=gamma_w*d1^2*cosd(60)/2;\n",
"F2=gamma_w*d2^2/2;\n",
"W=gamma_w*60*2*%pi*3*((d1+d2)/2)/360;\n",
"Fx=rho*q*(v2-v1*cosd(60))-F1/2+F2;\n",
"Fy=rho*q*(v1*sind(60))+F1*sind(60)+W;\n",
"F=(Fx^2+Fy^2)^0.5;\n",
"F=round(F*100)/100;\n",
"mprintf('Resultant force=%f kN/m.',F);"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 11.2: EX11_2.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"\n",
"\n",
"//example 11.2\n",
"//calculate discharge over oggy weir\n",
"clc;funcprot(0);\n",
"//given\n",
"C=2.4; //coefficient of discharge\n",
"H=2; //head\n",
"L=100; //length of spillway\n",
"wc=8; //heigth of weir crest above bottom\n",
"g=9.81; //acceleration due to gravity\n",
"h=H+wc;\n",
"Q1=C*L*H^(1.5); //neglecting approach velocity and end contractions\n",
"va=Q1/(h*L);\n",
"ha=va^2/(2*g);\n",
"Ha=ha+H;\n",
"Q=C*L*Ha^1.5;\n",
"Q=round(Q*10)/10;\n",
"mprintf('discharge over oggy weir=%f cumecs.',Q);"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 11.3: EX11_3.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"\n",
"\n",
"//example 11.3\n",
"//calculate\n",
"//capacity of siphon\n",
"//head required in oggy spillway\n",
"//length of oggy weir required\n",
"clc;funcprot(0);\n",
"//given\n",
"t=6; //tail water elevation\n",
"h=1; //heigth of siphon spillway\n",
"w=4; //width of siphon spillway\n",
"hw=1.5; //head water elevation\n",
"C=0.6; //coefficient of discharge\n",
"Co=2.25; //coefficient of discharge of oggy spillway\n",
"lo=4; //length of oggy spillway\n",
"hc=1.5; //head on weir crest\n",
"g=9.81; //acceleration due to gravity\n",
"\n",
"//part (a)\n",
"Q=C*h*w*(2*g*(t+hw))^0.5;\n",
"Q=round(Q*10)/10;\n",
"mprintf('capacity of siphon=%f cumecs.',Q);\n",
"\n",
"//part (b)\n",
"h1=(Q/(Co*lo))^(2/3);\n",
"h1=round(h1*100)/100;\n",
"mprintf('\nhead required in oggy spillway=%f m',h1);\n",
"\n",
"//part (c)\n",
"L=Q/(Co*(hc)^1.5);\n",
"L=round(L*100)/100;\n",
"mprintf('\nlength of oggy weir required=%f m.',L);"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 11.4: EX11_4.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"\n",
"\n",
"//example 11.4\n",
"//calculate number of siphons units required\n",
"clc;funcprot(0);\n",
"//given\n",
"rl=435; //full reservior level\n",
"cl=429.6; //level of centre of siphon\n",
"hfl=435.85; //high flood level\n",
"hfd=600; //high flood discharge\n",
"w=4; //width of throat\n",
"h=2; //heigth of throat\n",
"C=0.65; //coefficient of discharge\n",
"g=9.81; //acceleration due to gravity\n",
"\n",
"H=hfl-cl;\n",
"Q=C*w*h*(2*g*H)^0.5;\n",
"n=hfd/Q;\n",
"n=round(n*100)/100;\n",
"mprintf(' number of siphons units required=%f.\nhence provide 11 siphons units.',n);"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 11.5: EX11_5.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"\n",
"\n",
"//example 11.5\n",
"//design oggy spillway for concrete gravity dam\n",
"clc;funcprot(0);\n",
"//given\n",
"rbl=250; //avarage river bed level\n",
"rlc=350; //R.L of spillway crest\n",
"s=0.75; //slope on downstream side\n",
"Q=6500; //discharge\n",
"L=5*9; //length of spillway\n",
"Cd=2.2; //coefficient of discharge\n",
"t=2; //thickness of each pier\n",
"\n",
"//step 1. computation of design head\n",
"H=(Q/(Cd*L))^(2/3);\n",
"P=rlc-rbl;\n",
"\n",
"//P/H=6.15,which is<1.33;it is a high overflow spillway\n",
"\n",
"//H+P/H=7.15>1.7; hence discharge coefficient is not affected by downstream apron interface\n",
"\n",
"Kp=0.01;Ka=0.1;N=4;\n",
"He=17.5; //assumed\n",
"Le=L-2*(N*Kp+Ka)*He;\n",
"He1=(Q/(Cd*Le))^(2/3);\n",
"He1=round(He1*100)/100;\n",
"//He1 is almost equal to He\n",
"mprintf('crest profile will be designed for Hd=%f m.',He1);\n",
"\n",
"//step 2. determination of d/s profile\n",
"\n",
"//equating the slope of d/s side and derivative of profile equation suggested by WES\n",
"x=27.03;\n",
"y=0.04372*x^1.85;\n",
"mprintf('\n\ndownstream profile:');\n",
"x=[1:1:26]\n",
"for i=1:26\n",
" y(i)=0.04372*x(i)^1.85;\n",
" y(i)=round(y(i)*1000)/1000;\n",
"end\n",
"mprintf('\nx y');\n",
"for i=1:26\n",
" mprintf('\n%i %f',x(i),y(i));\n",
"end\n",
"mprintf('\n27.03 19.48');\n",
"\n",
"\n",
"//step 3. determination of u/s profile\n",
"// cosidering equation for vertical u/s face and Hd=17.58\n",
"\n",
"mprintf('\n\nupstream profile:');\n",
"x=[-0.5 -0.1 -1.5 -2.0 -3.0 -4.0 -4.75];\n",
"for i=1:7\n",
" y(i)=0.0633*(x(i)+4.7466)^1.85+2.2151-1.2643*(x(i)+4.7466)^0.625;\n",
" y(i)=round(y(i)*1000)/1000;\n",
"end\n",
"mprintf('\nx y');\n",
"for i=1:7\n",
" mprintf('\n%f %f',x(i),y(i));\n",
"end\n",
"\n",
"//step 4.design of d/s bucket\n",
"\n",
"R=P/4;\n",
"mprintf('\n\nradius of bucket=%i m.',R);\n",
"mprintf('\nbucket will subtend angle of 60 degree at the centre.');"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 11.6: EX11_6.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"\n",
"\n",
"//example 11.6\n",
"//design length and depth of stilling basin\n",
"clc;funcprot(0);\n",
"//given\n",
"q=1; //discharge of spillway\n",
"Cd=0.7; //coefficient of discharge\n",
"h1=10; //heigth of crest above downstream silting basin\n",
"g=9.81; //acceleration due to gravity\n",
"Cv=0.9; //coefficient of velocity\n",
"\n",
"h=(3*q/(2*Cd*(2*g)^0.5))^(2/3);\n",
"H=h1+h/2;\n",
"vt=(2*g*H)^0.5;\n",
"v1=Cv*vt;\n",
"y1=q/v1;\n",
"F1=v1/(g*y1)^0.5;\n",
"//F>1, flow is super-critical\n",
"y2=1;\n",
"v2=q/y2;\n",
"F2=v2/(g*y2)^0.5; //<1\n",
"y2=(y1/2)*((1+8*F1^2)^0.5-1);\n",
"de=y2-1;\n",
"le=5*(y2-y1);\n",
"de=round(de*1000)/1000;\n",
"le=round(le*10)/10;\n",
"mprintf('stilling basin should be depressed by %f m.',de);\n",
"mprintf('\nlength of stilling basin=%f m.',le);\n",
"\n",
""
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 11.7: EX11_7.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"\n",
"\n",
"//example 11.7\n",
"//calculate leading dimension of hydraulic jump stilling basin\n",
"clc;funcprot(0);\n",
"//given\n",
"q=7.83; //discharge through spillway\n",
"w=12.5; //width of fall\n",
"d=2; //depth of water in downstream\n",
"g=9.8;\n",
"\n",
"y1=0.5;\n",
"v1=q/y1;\n",
"F1=v1/(g*y1)^0.5;\n",
"\n",
"//F>1,flow is super-critical\n",
"v2=q/d;\n",
"F2=v2/(g*d)^0.5;\n",
"y2=(y1/2)*((1+8*F1^2)^0.5-1);\n",
"de=y2-d;\n",
"le=5*(y2-y1);\n",
"de=round(de*100)/100;\n",
"le=round(le*10)/10;\n",
"mprintf('stilling basin should be depressed by %f m.',de);\n",
"mprintf('\nlength of stilling basin=%f m.',le); "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 11.8: EX11_8.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"\n",
"\n",
"//example 11.8\n",
"//calculate force to be exerted to lift the gate\n",
"clc;funcprot(0);\n",
"//given\n",
"Ag=5*2.5; //area of gate\n",
"miu=0.25; //coefficient of friction\n",
"w=0.5; //weigth of gate\n",
"h=2; //head of water over crest\n",
"g=9.81; //acceleration due to gravity\n",
"gamma_w=1000; //unit weigth of water\n",
"\n",
"m=w*g*1000;\n",
"F=gamma_w*Ag*h*h*g/10;\n",
"ff=miu*F;\n",
"tf=(m+ff)/1000;\n",
"mprintf('force to be exerted to lift the gate=%f kN.',tf);\n",
""
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 11.9: EX11_9.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"\n",
"\n",
"//example 11.9\n",
"//calculate depth of flow at both end of jumps\n",
"clc;funcprot(0);\n",
"//given\n",
"q=19; //dischrge through spillway\n",
"E=1; //energy loss\n",
"\n",
"//from energy loss equation;E=(y2-y1)^3/4y2y1; and solving it we get\n",
"//x=0.5*(-1+(1+294.39*(x-1)^9/64*x^3))\n",
"//by trial and error method x=2.806\n",
"x=2.806;\n",
"y1=4*x/(x-1)^3;\n",
"y2=x*y1;\n",
"y1=round(y1*1000)/1000;\n",
"y2=round(y2*1000)/1000;\n",
"mprintf('depth of flow at both end of jumps=%f m and %f m. respectively.',y1,y2);\n",
""
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Scilab",
"language": "scilab",
"name": "scilab"
},
"language_info": {
"file_extension": ".sce",
"help_links": [
{
"text": "MetaKernel Magics",
"url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
}
],
"mimetype": "text/x-octave",
"name": "scilab",
"version": "0.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|