1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 11: Carburation and carburettors"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 11.10: Fuel_consumption_and_air_velocity_through_tube.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;funcprot(0);//EXAMPLE 11.10\n",
"// Initialisation of Variables\n",
"d=0.11;..................//Engine bore in m\n",
"l=0.11;..................//Engine length in m\n",
"da=0.042;................//Throat diameter of the choke tube in m\n",
"N=3000;..................//Engine rpm\n",
"etaV=0.75;...............//Volumetric efficiency\n",
"Ra=287;..................//Gas constant for air in J/kgK\n",
"Rv=97;...................//Gas constant for fuel vapour in J/kgK\n",
"t=273;....................//Temperature in Kelvin\n",
"p=1.013;...................//Pressure in bar\n",
"delpa=0.12;.................//Pressure depression in bar\n",
"t2=273+15;...................//Temperature at throat\n",
"n=8;........................//No of cylinders\n",
"mO=32;.......................//Mass of Oxygen molecule in amu\n",
"mC=12;........................//Mass of Carbon molecule in amu\n",
"mH=1;.......................//Mass of Hydrogen molecule in amu\n",
"cC=84;......................//Composition of carbon in %\n",
"cH2=16;.....................//Composition of Hydrogen in % \n",
"//Calculations\n",
"Vfm=(%pi/4)*d*d*l*n*(N/2)*etaV;.....................//Volume of fuel mixture supplied in m^3/min\n",
"afr=((cC*(mO/mC))+(cH2*(mO/(4*mH))))/23;..................//Air fuel ratio\n",
"va=(Ra*t)/(p*10^5);.....................//Volume of 1 kg of air in m^3/kg\n",
"vf=(Rv*t)/(p*10^5);......................//Volume of 1 kg of fuel vapour in m^3/kg\n",
"fc=(Vfm/((afr*va)+vf))*60;...............//Fuel consumption in kg/h\n",
"disp(fc,'Fuel consumption (in kg/h):')\n",
"rhoa=((p-delpa)*10^5)/(Ra*t2);...............//Density of air at the throat in kg/m^3\n",
"Ca=(afr*(fc/3600))/((%pi/4)*da*da*rhoa);................//Velocity of air at the throat in m/s\n",
"disp(Ca,'Velocity of air at the throat (in m/s):')"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 11.11: Air_fuel_ratio_at_a_given_altitude.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;funcprot(0);//EXAMPLE 11.11\n",
"// Initialisation of Variables\n",
"a=4500;.................//Altitude\n",
"afr=14;...............//Air fuel ratio at sea level\n",
"t1=25;...........//Temperature at sea level in Celsius\n",
"p1=1.013;...........//Pressure at sea level in bar\n",
"//Calculations\n",
"t2=t1-(0.0064*a);.........................//Temperature at the given altitude using the given formula in Celsius\n",
"p2=p1/(10^(a/19300));....................//Pressure at the given altitude using the given formula in bar\n",
"afr2=afr*sqrt((p2*(t1+273))/(p1*(t2+273)));...................//Air fuel ratio at the altitude\n",
"disp(afr2,'Air fuel ratio at the altitude:')"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 11.1: Suction_at_throat.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;funcprot(0);//EXAMPLE 11.1\n",
"// Initialisation of Variables\n",
"d=0.1;..................//Cylinder bore in m\n",
"l=0.12;................//Cylinder stroke in m\n",
"N=1800;..................//Engine rpm\n",
"d2=0.028;................//Throat diameter in m\n",
"Cda=0.8;................//Co efficient of air flow\n",
"etaV=0.75;..................//Volumetric efficiency\n",
"rhoa=1.2;................//Density of air in kg/m^3\n",
"n=4;.......................//No of cylinders\n",
"//Calculations\n",
"Vs=(%pi/4)*d*d*l*n;.................//Stroke Volume in m^3\n",
"Va=etaV*Vs;.......................//Actual volume per stroke in m^3\n",
"Vas=Va*(N/2)*(1/60);.............//Actual volume sucked per second\n",
"ma=Vas*rhoa;.........................//Air consumed in kg/sec\n",
"delp=((ma/(Cda*(%pi/4)*d2*d2))^2)/(2*rhoa);.............//Suction at throat in N/m^2\n",
"disp(delp,'Suction at throat (in N/m^2):')"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 11.2: Depression_in_Venturi_throat_and_throat_area.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;funcprot(0);//EXAMPLE 11.2\n",
"// Initialisation of Variables\n",
"cp=5;.................//Consumption of petrol in kg/h\n",
"afr = 16;...............//Air fuel ratio\n",
"Af=2*10^(-6);..............//Fuel orifice area in m^2\n",
"z=0.005;................//Distance between tip of jet and level of petrol in float chamber in m\n",
"spgrp=0.75;..............//Specific gravity of petrol\n",
"rhow=1000;.................//Density of water in kg/m^3\n",
"rhoa=1.2;....................//Density of air in kg/m^3\n",
"Cda=0.8;...............//Coefficient of discharge for venturi throat\n",
"g=9.81;...............//Acceleration due to gravity in m/sec^2\n",
"//Calculations\n",
"mf=cp/3600;.................//Fuel consumed in kg/sec\n",
"delp=(((mf/(Af*Cda))^2)*(1/(2*spgrp*rhow)))+(g*z*spgrp*rhow);\n",
"disp(delp,'Suction at the throat in (N/m^2)')\n",
"ma=mf*afr;................//Air flow rate\n",
"Atsqr=((ma/Cda)^2)*(1/(2*rhoa*delp));....................//Throat area in m^2\n",
"disp(sqrt(Atsqr)*10^4,'Throat area (in cm^2)')"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 11.3: Diameter_of_the_fuel_jet.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;funcprot(0);//EXAMPLE 11.3\n",
"// Initialisation of Variables\n",
"pc=7.2;.................//Petrol consumed in kg/h\n",
"spgrp=0.75;................//Specific gravity of fuel\n",
"rhow=1000;.................//Density of water in kg/m^3\n",
"t1=300;...................//Temperature of air in Kelvin\n",
"afr=15;....................//Air fuel ratio\n",
"d2=0.024;....................//Diameter of choke tube in m\n",
"z=0.0042;...................//The height of the jet above petrol level in float chamber in m\n",
"Cda=0.8;....................//Coefficient of discharge for air\n",
"Cdf=0.7;.....................//Coefficient of discharge for fuel\n",
"p1=1.013;.....................//Atmospheric pressure in bar\n",
"g=9.81;.......................//Acceleration due to gravity in m/s^2\n",
"R=287;........................//Gas constant in J/kg.K\n",
"//calculations\n",
"mf=pc/3600;....................//Rate of fuel consumption in kg/sec\n",
"rhof=spgrp*rhow;...............//Density of fuel in kg/m^3\n",
"rhoa=(p1*10^5)/(R*t1);............//Density of air in kg/m^3\n",
"ma=mf*afr;.......................//Air flow rate \n",
"delpa=((ma/(Cda*(%pi/4)*d2^2))^2)*(1/(2*rhoa));....................//Suction in N/m^2\n",
"df=sqrt((mf/sqrt(2*rhof*(delpa-(g*z*rhof))))*(1/(Cdf*(%pi/4))));.................//Diameter of fuel jet in m\n",
"disp(df*1000,'Diameter of the fuel jet (in mm):')"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 11.4: Venturi_depression_and_diameter_and_velocity_of_air_across_venturi.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;funcprot(0);//EXAMPLE 11.4\n",
"// Initialisation of Variables\n",
"pc=5.45;......................//Petrol consumption in kg/h\n",
"afr=15;......................//Air fuel ratio\n",
"af=2*10^(-6);................//Fuel jet orifice area in m^2\n",
"z=0.00635;...................//Distance between tip of fuel jet and level of petrol in the float chamber in m\n",
"Cda=0.8;............................//Coefficient of discharge of venturi throat\n",
"rhoa=1.29;........................//Density of air in kg/m^3\n",
"spgrp=0.72;........................//Specific gravity of fuel\n",
"rhow=1000;.........................//Density of water in kg/m^3\n",
"g=9.81;..............................//Acceleration due to gravity in m/s^2\n",
"Cdf=0.75;........................//Coefficient of discharge of the fuel\n",
"//calculations\n",
"mf=pc/3600;....................//Fuel consumed in kg/sec\n",
"rhof=spgrp*rhow;...............//Density of fuel in kg/m^3\n",
"delp=(((mf/(af*Cdf))^2)*(1/(2*rhof)))+(g*z*rhof);......................//Depression in venturi throat in N/m^2\n",
"h2odep=delp/(g*1000);................................//Depression in venturi throat in cm of Water\n",
"disp(h2odep*100,'Suction at the throat (in cm of Water):')\n",
"ma=mf*afr;................//Air flow rate\n",
"At=sqrt(((ma/Cda)^2)*(1/(2*rhoa*delp)));....................//Throat area in m^2\n",
"dt=sqrt(At/(%pi/4));........................................//Throat diameter in m\n",
"disp(dt*100,'Throat area (in cm):')\n",
"Ct=sqrt((2*g*z*rhof)/rhoa);..........................//Velocity of air across the venturi throat in m/sec\n",
"disp(Ct,'Velocity of air across the venturi throat (in m/s):')\n",
""
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 11.5: Throat_pressure_with_respct_to_air_cleaner.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;funcprot(0);//EXAMPLE 11.5\n",
"// Initialisation of Variables\n",
"afr=15;.....................//Air fuel ratio\n",
"p1=1;.........................//Atmospheric pressure in bar\n",
"p2=0.8;.......................//Pressure at venturi throat in bar\n",
"pd=30;....................//Pressure drop to air cleaner in mm of Hg\n",
"rhohg=13600;....................//Density of Hg in kg/m^3\n",
"af=240;........................//Air flow at sea level in kg/h\n",
"g=9.81;.....................//Acceleration due to gravity in m/s^2\n",
"//calculations\n",
"delpa=p1-p2;........................//When there is no air cleaner\n",
"pt=1-(rhohg*g*(pd/1000)*10^(-5))-delpa;..........................//Throat pressure in bar\n",
"disp(pt,'Throat pressure (in bar):')\n",
"afrn=afr*sqrt(delpa/(p1-pt));...............................//Air fuel ratio when the air cleaner is fitted\n",
"disp(afrn,'Air fuel ratio when the air cleaner is fitted:')\n",
""
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 11.6: Throat_diameter.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;funcprot(0);//EXAMPLE 11.6\n",
"// Initialisation of Variables\n",
"as=4.6;........................//Air supply in kg/min\n",
"p1=1.013;.......................//Atmospheric pressure in bar\n",
"t1=298;......................//Atmospheric temperature in Kelvin\n",
"C2=80;........................//Air flow velocity in m/s\n",
"Cv=0.8;....................//Velocity co efficient\n",
"ga=1.4;........................//Degree of freedom of gas\n",
"R=0.287;........................//Gas constant in kJ/kgK\n",
"//Calculations\n",
"cp=R*(ga/(ga-1));.......................//Specific heat capacity of air in kJ/kgK\n",
"p2=((1-(((C2/Cv)^2)*(1/(2*cp*1000*t1))))^(ga/(ga-1)))*p1;...................//Throat pressure in bar\n",
"rho1=(p1*10^5)/(R*1000*t1);\n",
"rho2=rho1*(p2/p1)^(1/ga);\n",
"ma=as/60;...................//Air flow in kg/s\n",
"A2=ma/(rho2*C2);.................//Throat area in m^2\n",
"d2=sqrt((4*A2)/%pi);................//Throat diameter in m\n",
"disp(d2,'Throat diameter in m')"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 11.7: Throat_diameter_and_orifice_diameter.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;funcprot(0);//EXAMPLE 11.7\n",
"// Initialisation of Variables\n",
"as=6;........................//Air supply in kg/min\n",
"fs=0.45;..........................//Fuel supply in kg/min\n",
"p1=1.013;.......................//Atmospheric pressure in bar\n",
"t1=300;......................//Atmospheric temperature in Kelvin\n",
"rhof=740;......................//Density of fuel in kg/m^3\n",
"C2=92;........................//Air flow velocity in m/s\n",
"Cda=0.8;....................//Velocity co efficient\n",
"Cdf=0.6;.........................//Coefficient of discharge for fuel\n",
"ga=1.4;........................//Degree of freedom of gas\n",
"r=0.75;......................//ratio of pressure drop across venturi and of that of choke\n",
"R=0.287;........................//Gas constant in kJ/kgK\n",
"//Calculations\n",
"ma=as/60;.................................//Air flow in kg/s\n",
"mf=fs/60;.................................//Fuel flow in kg/s\n",
"cp=R*(ga/(ga-1));.......................//Specific heat capacity of air in kJ/kgK\n",
"p2=((1-(((C2/Cda)^2)*(1/(2*cp*1000*t1))))^(ga/(ga-1)))*p1;...................//Throat pressure in bar\n",
"v1=(R*t1*1000)/(p1*10^5);\n",
"v2=v1*(p1/p2)^(1/ga);................//specific volume in m^3/kg\n",
"A2=(ma*v2)/(C2);.................//Throat area in m^2\n",
"d2=sqrt((4*A2)/%pi);................//Throat diameter in m\n",
"disp(d2*100,'Throat diameter (in cm):')\n",
"pdv=p1-p2;..........//Pressure drop at venturi in bar\n",
"pdj=r*pdv;.............//Pressure drop at jet in bar\n",
"Af=((mf/Cdf)*(1/sqrt(2*rhof*pdj*10^5)));.............//Area of orifice in m^2\n",
"df=sqrt((4*Af)/%pi);................//Orifice diameter in m\n",
"disp(df,'Orifice diameter (in cm):')\n",
"\n",
"\n",
""
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 11.8: Choke_diameter_and_fuel_jet_diameter.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;funcprot(0);//EXAMPLE 11.8\n",
"// Initialisation of Variables\n",
"Vs=1489*10^(-6);.......................//Capacity of engine in m^3\n",
"N=4200;...............//Engine rpm at which max speed is developed\n",
"etaV=0.75;.....................//Volumetric efficiency\n",
"afr=13;........................//air fuel ratio\n",
"Ct=85;..........................//Theoretical air speed at peak power in m/s\n",
"C2=Ct;\n",
"Cda=0.82;....................//Coefficient of discharge for the venturi\n",
"Cdf=0.65;....................//Coefficient of discharge of main petrol jet\n",
"spgr=0.74;..................//Specific gravity of petrol\n",
"z=0.006;.................................//Level of petrol surface below choke\n",
"p1=1.013;......................//Atmospheric pressure in bar\n",
"t1=293;.........................//Atmospheric temperature in Kelvin\n",
"r=0.4;.............................//Ratio of diameter of emulsion tube to choke diameter\n",
"R=0.287;.............................//Gas constant in kJ/kgK\n",
"ga=1.4;..............................//Degree of freedom for air\n",
"g=9.81;..............................//Acceleration due to gravity in m/s^2\n",
"rhow=1000;...........................//Density of water in kg/m^3\n",
"//calculations\n",
"rhof=rhow*spgr;............................//Density of fuel in kg/m^3\n",
"Va=(etaV*Vs*N)/(60*2);.....................//Volume of air induced in m^3/s\n",
"ma=(p1*10^5*Va)/(R*t1*1000);...............//mass flow of air in kg/s\n",
"cp=R*(ga/(ga-1));.......................//Specific heat capacity of air in kJ/kgK\n",
"p2=((1-(((C2)^2)*(1/(2*cp*1000*t1))))^(ga/(ga-1)))*p1;...................//Throat pressure in bar\n",
"pt=p2;\n",
"vt=Va*(p1/p2)^(1/ga);.....................//Volume flow of air at choke in m^3/s\n",
"At=vt/(Ct*Cda);...................//Area of emulsion tube in m\n",
"D=sqrt((4*At*10^6)/(%pi*(1-r^2)));...................//Diameter of choke in mm\n",
"disp(D,'Diameter of choke (in mm):')\n",
"mf=ma/afr;..................//Mass flow of fuel in kg/s\n",
"delpa=(p1-p2)*10^5;\n",
"df=sqrt((mf/sqrt(2*rhof*(delpa-(g*z*rhof))))*(1/(Cdf*(%pi/4))));.................//Diameter of fuel jet in m\n",
"disp(df*1000,'Diameter of the fuel jet (in mm):')\n",
""
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 11.9: Air_fuel_ratio_with_respect_to_nozzle_lip.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;funcprot(0);//EXAMPLE 11.9\n",
"// Initialisation of Variables\n",
"da=0.018;..........................//Throat Diameter in m\n",
"df=0.0012;......................//Diameter of fuel orifice in m\n",
"Cda=0.82;.................//Coefficient of air flow\n",
"Cdf=0.65;......................//Coefficient of fuel flow\n",
"z=0.006;........................//Level of petrol surface below the throat\n",
"rhoa=1.2;.......................//density of air in kg/m^3\n",
"rhof=750;.........................//density of fuel in kg/m^3\n",
"g=9.81;........................//Acceleration due to gravity in m/s^2\n",
"delp=0.065*10^5;...................//Pressure drop in N/m^2\n",
"//Calculations\n",
"afr1=(Cda/Cdf)*((da/df)^2)*sqrt(rhoa/rhof);..................//Air fuel ratio when the nozzle lip is neglected\n",
"disp(afr1,'Air fuel ratio when the nozzle lip is neglected:')\n",
"afr2=afr1*sqrt(delp/(delp-(g*z*rhof)));.....................//Air fuel ratio when nozzle lip is taken into account\n",
"disp(afr2,'Air fuel ratio when nozzle lip is taken into account:')\n",
"C2=sqrt((2*g*z*rhof)/rhoa);.........................//Minimum velocity of air in m/s\n",
"disp(C2,'Minimum velocity of air (in m/s):')"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Scilab",
"language": "scilab",
"name": "scilab"
},
"language_info": {
"file_extension": ".sce",
"help_links": [
{
"text": "MetaKernel Magics",
"url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
}
],
"mimetype": "text/x-octave",
"name": "scilab",
"version": "0.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|