summaryrefslogtreecommitdiff
path: root/Gas_Turbines_by_V_Ganesan/9-Axial_Flow_Compressors.ipynb
blob: 17beb4c393844d2f090bfc904b55225925fcbc8d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
{
"cells": [
 {
		   "cell_type": "markdown",
	   "metadata": {},
	   "source": [
       "# Chapter 9: Axial Flow Compressors"
	   ]
	},
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 9.10: Determination_of_blade_and_air_angle.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"clc;\n",
"u=250; // Mean blade speed in m/s\n",
"rp=1.3; // Pressure ratio\n",
"ca=200; // Axial velocity in m/s\n",
"p01=1; // Inlet pressure in bar\n",
"T01=300; // Inlet temperature in kelvin\n",
"R1=0.5; // Degree of reaction\n",
"Cp=1.005; // Specific heat in KJ/kg K\n",
"r=1.4; // Specific heat ratio\n",
"R=287; // Characteristic gas constant in J/kg K\n",
"\n",
"Del_T=(rp^((r-1)/r)-1)*T01;\n",
"//tan_beta1+tan_beta2=(R*2*u/ca);\n",
"//tan_beta1-tan_beta2=(Del_T*Cp*10^3/(u*ca));\n",
"A=[1 1;1 -1]; B=[(R1*2*u/ca) ;(Del_T*Cp*10^3/(u*ca))];\n",
"tan_beta=A\B;\n",
"beta_1=atand (tan_beta(1));\n",
"beta_2=atand (tan_beta(2));\n",
"alpha_1=beta_2; alpha_2=beta_1;\n",
"\n",
"disp ('degree',beta_2,'beta2 = ','degree',beta_1,'beta1 = ');\n",
"disp ('degree',alpha_2,'alpha2 = ','degree',alpha_1,'alpha1 = ');"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 9.11: Calculation_of_rotational_speed.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"clc;\n",
"n=4; // Number of stage\n",
"rp=10; // Pressure ratio\n",
"eff_p_ac=0.92; // Ploytropic efficiency of axial compressor\n",
"eff_p_cc=0.83; // Polytropic efficiency of centrifugal compressor\n",
"Del_Trise=30; // Axial compressor stage temperature in kelvin\n",
"R=0.5; // Reaction stage\n",
"beta_2=20; // Outlet stator angle in degree\n",
"D=0.25; // Mean diameter of each stage in m\n",
"wf=0.8; // Work done factor\n",
"ca=150; // Axial velocity in m/s\n",
"Di=0.33; //Impeller diameter in m\n",
"mu=0.9; // Slip factor\n",
"p01=1.01; // Ambient pressure in bar\n",
"T01=288; // Ambient temperature in kelvin\n",
"pif=1.04; // Power input factor\n",
"Cp=1.005; // Specific heat in KJ/kg K\n",
"r=1.4; // Specific heat ratio\n",
"R=287; // Characteristic gas constant in J/kg K\n",
"\n",
"beta_1=atand (sqrt ((Cp*10^3*Del_Trise/(wf*ca^2))+(tand(beta_2)^2)));\n",
"u=ca*(tand (beta_1)+tand(beta_2));\n",
"Nac=(u/(3.14*D));\n",
"r1=(1+n*Del_Trise/T01)^(eff_p_ac*r/(r-1)); // Total pressure ratio across the axial compressor\n",
"\n",
"r2=rp/r1; // Pressure ratio across centrifugal compressor\n",
"T02=T01*r1^((r-1)/(eff_p_ac*r));\n",
"T03=T02*r2^((r-1)/(eff_p_cc*r));\n",
"Del_Tsc=T03-T02;\n",
"u=sqrt ((Del_Tsc*Cp*10^3)/(pif*mu));\n",
"Ncc=u/(3.14*Di);\n",
"\n",
"disp ('rps   (roundoff error)',Nac,'Speed of the axial compressor = ');\n",
"disp ('rps   (roundoff error)',Ncc,'Speed of the centrifugal compressor = ');"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 9.1: Estimation_of_blade_angles.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"clc;\n",
"n=10; // No of stages in the axial flow compressor\n",
"rp=5; // Overall pressure ratio\n",
"eff_C=0.87; // Overall isentropic efficiency\n",
"T1=15+273; // Temperature of air at inlet in kelvin\n",
"u=210; // Blade speed in m/s\n",
"ca=170; // Axial velocity in m/s\n",
"wf=1; // Work factor\n",
"r=1.33; // Specific heat ratio\n",
"Cp=1.005; // Specific heat in kJ/kg K\n",
"\n",
"Del_Tstage=(T1*(rp^((r-1)/r)-1))/(n*eff_C); // Temperature increase per stage\n",
"// By property relations and let us assume \n",
"// tan_beta1-tan_beta2=Del_Tstage*Cp/(wf*u*ca)\n",
"// tan_beta1+tan_beta2=u/ca   for 50% reaction \n",
"// To solve this above equations using matrix method\n",
"a=[1,-1;1,1]; c=[(Del_Tstage*Cp*10^3/(wf*u*ca));u/ca];\n",
"b=a\c;\n",
"beta1=atand(b(1));// Blade angles at inlet\n",
"beta2=atand(b(2)); // Blade angles at outlet\n",
"\n",
"disp ('degree   (roundoff error)',beta2,'Blade angle at outlet = ','degree   (roundoff error)',beta1,'Blade angle at inlet = ');"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 9.2: Calculation_of_mass_flow_rate_and_degree_of_reaction.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"clc;\n",
"P1=1.0132; // Inlet air pressure in bar\n",
"T01=288; // Inlet air temperature in kelvin\n",
"ca=150; // axial velocity in m/s\n",
"dtip=60; // Tip diameter of rotor in cm\n",
"dhub=50; // Hub diameter of rotor in cm\n",
"N=100; // Speed of rotor in rps\n",
"t_angle=30; // Deflected angle of air in degree (in question it is 30.2 but in solution it is 30)\n",
"P2_P1=1.2; // Stage pressure ratio\n",
"Cp=1005; // Specific heat in J/kg K\n",
"r=1.4; // Specific heat ratio\n",
"R=287; // Characteristic gas constant in J/kg K\n",
"\n",
"u=(3.142857*(dhub+dtip)*10^-2*N)/2; // Mean blade velocity\n",
"beta_1=atand(u/ca); // Blade angle at inlet\n",
"beta_2=beta_1-t_angle; // As air is deflected by 30\n",
"// from velocity triangle\n",
"x=ca*tand(beta_2);\n",
"alpha_2=atand ((u-x)/ca);\n",
"C1=ca;\n",
"T1=T01-(C1^2/(2*Cp)); // Static temperature at inlet\n",
"P2=P1*P2_P1; // Pressure at outlet\n",
"T2=T1*(P2/P1)^((r-1)/r); // Static temperature at outlet\n",
"row_2=(P2*10^5)/(R*T2); // Density at outlet\n",
"m=3.14*(dtip^2-dhub^2)*ca*row_2*10^-4/4; // Mass flow rate\n",
"wf=1; // Work factor\n",
"P=wf*u*ca*m*(tand(beta_1)-tand(beta_2))/1000; // Power developed\n",
"R=ca*(tand(beta_1)+tand(beta_2))/(2*u); // Degree of reaction\n",
"\n",
"disp ('kg/s',m,'Mass flow rate = ');\n",
"disp('kW    (Error due to more decimal values in expression)',P,'Power developed = ');\n",
"disp (R,'Degree of Reaction = ');"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 9.3: Estimation_of_number_of_stages_of_the_compressors.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"clc;\n",
"beta_1=45; // Inlet blade angle in degree\n",
"beta_2=10; // Outlet blade angle in degree\n",
"rp=6; // Compressor pressure ratio\n",
"eff_C=0.85;// Overall isentropic efficiency\n",
"T1=37+273; // Inet static temperature in kelvin\n",
"u=200; // Blade speed in m/s\n",
"Cp=1005; // Specific heat in J/kg K\n",
"r=1.4; // Specific heat ratio\n",
"R=287; // Characteristic gas constant in J/kg K\n",
"\n",
"// (i). wf=1\n",
"wf=1; // Work factor\n",
"ca=u/(tand(beta_1)+tand(beta_2)); // Axial velocity\n",
"Del_Tstage=wf*u*ca*(tand(beta_1)-tand(beta_2))/Cp; // Stage temperature drop\n",
"Del_Toverall=(T1*(rp^((r-1)/r)-1))/eff_C; // Overall temperature drop\n",
"n=Del_Toverall/Del_Tstage; // No of stages\n",
"\n",
"disp (n,'Number of stages required = ','(i).wf = 1');\n",
"\n",
"// (ii).wf = 0.87\n",
"wf =0.87; // Work factor\n",
"ca=u/(tand(beta_1)+tand(beta_2)); // Axial velocity\n",
"Del_Tstage=wf*u*ca*(tand(beta_1)-tand(beta_2))/Cp; // Stage temperature drop\n",
"Del_Toverall=T1*(rp^((r-1)/r)-1)/eff_C; // Overall temperature drop\n",
"n=Del_Toverall/Del_Tstage; // No of stages\n",
"\n",
"disp (n,'Number of stages required = ','(ii).wf = 0.87');"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 9.4: Determination_of_Mach_number_relative_to_Rotor.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"clc;\n",
"rp=4; // Total head pressure ratio\n",
"eff_O=0.85; // Overall total head isentropic efficiency\n",
"T01=290; // Total head inlet temperature in kelvin\n",
"alpha_1=10; // Inlet air angle in degree\n",
"alpha_2=45; // Outlet air angle in degree\n",
"u=220; // Blade velocity in m/s\n",
"wf=0.86; // Wok done factor\n",
"R=284.6; // Characteristic gas constant in kJ/kg K\n",
"Cp=1005; // Specific heat in J/kg K\n",
"r=1.4; // Specific heat ratio\n",
"\n",
"eff_P=1/(log10(((rp^((r-1)/r)-1)/eff_O)+1)/(log10(rp)*((r-1)/r)));; \n",
"// From velocity triangle\n",
"ca=u/(tand(alpha_1)+tand(alpha_2)); // Axial velocity\n",
"Del_Tstage=wf*u*ca*(tand(alpha_2)-tand(alpha_1))/Cp; // Stage temperature rise\n",
"T02=T01*(rp)^((r-1)/(r*eff_P)); // Total head temperature \n",
"T02_T01=T02-T01; // Total temperature rise\n",
"n=T02_T01/Del_Tstage; // Total number of stages\n",
"// from velocty traingles\n",
"w1=ca/cosd(alpha_2);\n",
"c1=ca/cosd(alpha_1);\n",
"T1=T01-c1^2/(2*Cp); // Static temperature\n",
"M=w1/sqrt(r*R*T1); // Mach number at inlet\n",
"\n",
"disp (eff_P*100,'Polytropic efficiency of the compressor = ');\n",
"disp (n,'Total number of stages = ');\n",
"disp (M,'Mach number at inlet = ');"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 9.5: Calculation_of_pressure_rise_per_blade_ring_and_the_power_input_per_stage.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"clc;\n",
"Q=1000; // Flow rate of free air in m^3/min\n",
"P1=0.98; // Inlet pressure in bar\n",
"T1=15+273; // Inlet temperature in kelvin\n",
"Dm=0.6; // Mean diameter in m\n",
"h=6.75; // blade length in cm\n",
"CL=0.6; CD=0.05; // At zero angle of incidence\n",
"Cp=1.005; // Specific heat in kJ/kg K\n",
"r=1.4; // Specific heat ratio\n",
"R=287; // Characteristic gas constant in J/kg K\n",
"k=1-0.1; //Blade occupys 10% of axial area\n",
"N=6000; // speed in rpm\n",
"Ac=19.25*10^-4; // Projected area in m^2\n",
"n=50;\n",
"eff_C=1; // Efficiency of compressor\n",
"\n",
"row=(P1*10^5)/(R*T1); // Density\n",
"A=k*3.14*Dm*h*10^-2; // Area of axial\n",
"ca=Q/(60*A); // Axial velocity\n",
"u=3.14*Dm*N/60; // Blade velocity\n",
"beta_1=atand(u/ca); // Blade angle at inlet\n",
"w=sqrt (ca^2+u^2); // From velocity triangle\n",
"L=CL*row*w^2*Ac/2;\n",
"D=CD*row*w^2*Ac/2;\n",
"P=(L*cosd(beta_1)+D*sind (beta_1))*u*n*10^-3; // Power input / stage\n",
"m=Q*row/60;// mass flow rate\n",
"rp=((P*eff_C/(m*Cp*T1))+1)^(r/(r-1)); // pressure ratio\n",
"P2=rp*P1; // Pressure\n",
"\n",
"disp ('kW   (Roundoff error )',P,'Power input/stage = ');\n",
"disp ('bar',P2,'Pressure at outlet = ');"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 9.6: Determination_of_the_direction_of_the_air_entry_to_and_exit_from_the_rotor.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"clc;\n",
"T1=290; // Temperature at inlet in kelvin\n",
"n=10; // Number of stages\n",
"rp=6.5; // Pressure ratio\n",
"m=3; // mass flow rate in kg/s\n",
"eff_C=0.9; // isentropic efficiency of the compression\n",
"ca=110; // Axial velocity in m/s\n",
"u=180; // Mean blade velocity in m/s\n",
"Cp=1.005; // Specific heat in kJ/kg K\n",
"r=1.4; // Specific heat ratio\n",
"R=287; // Characteristic gas constant in J/kg K\n",
"\n",
"T_2=(rp)^((r-1)/r)*T1; // temperature after isentropic compression\n",
"T2=((T_2-T1)/eff_C)+T1; // Temperature after actual compression\n",
"P=m*Cp*(T2-T1); // Power given to the air\n",
"Del_Tstage=(T2-T1)/n; // Temperature rise per stage\n",
"Del_ct=Cp*10^3*Del_Tstage/u; // For work done per kg of air per second\n",
"// To find blade angles let solve the following equations\n",
"// Del_ct=ca(tan beta_1-tan beta_2) for symmetrical stages\n",
"// u=ca(tan beta_1=tan beta_2) for degree of reaction = 0.5\n",
"// Solving by matrix method\n",
"A=[1,-1;1,1]; C=[Del_ct/ca;u/ca];\n",
"B=A\C;\n",
"// Blade angles at entry and exit\n",
"beta_1=atand(B(1));\n",
"beta_2=atand(B(2));\n",
"\n",
"disp ('kW   (roundoff error)',P,'Power given to the air = ');\n",
"disp ('degree',beta_2,'Blade angle at exit = ','degree',beta_1,'Blade angle at inlet = ');"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 9.7: Calculation_of_the_rotational_speed_and_the_length_of_the_last_stage.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"clc;\n",
"rp=4; // Overall pressure ratio\n",
"m=3; // mass flow rate in kg/s\n",
"eff_pc=0.88; // Polytropic efficiency\n",
"Del_Tstage=25; // The stagnation temperature pressure rise in kelvin\n",
"c1=165; // Absolute velocity in m/s\n",
"alpha_1=20; // air angle from axial direction in degree\n",
"wf=0.83; // Workdone factor\n",
"D=18; // Mean diameter of the last stage rotor in cm\n",
"P01=1.01; // Ambient pressure in bar\n",
"T01=288; // Ambient temperature in kelvin\n",
"Cp=1005; // Specific heat in J/kg K\n",
"r=1.4; // Specific heat ratio\n",
"R=287; // Characteristic gas constant in J/kg K\n",
"\n",
"n=1/(1-(r-1)/(r*eff_pc));\n",
"T02=T01*(rp)^((n-1)/n); // Total pressure at stage 2\n",
"Del_Toverall= T02-T01; // Overall temperature difference\n",
"Ns=Del_Toverall/Del_Tstage; // Number of stages\n",
"eff_C=((rp^((r-1)/r)-1)/(rp^((r-1)/(r*eff_pc))-1));// Efficiency of compressor\n",
"rp1=(1+(eff_C*Del_Tstage/T01))^(r/(r-1)); // Pressure ratio acrocc first stage\n",
"Del_Tstage1=Del_Toverall/Ns; // Temperature rise across stage 1\n",
"T0ls=T02-Del_Tstage1; // Temperature at inlet to last stage\n",
"rpls=(1+(eff_C*Del_Tstage1/T0ls))^(r/(r-1)); // Pressure ratio acrocc last stage\n",
"// For symmetrical blade, R=0.5\n",
"beta_2=alpha_1; \n",
"ca=c1*cosd (alpha_1); // Axial velocity\n",
"beta_1=atand(sqrt(((Cp*Del_Tstage1/(wf*ca))/ca)+(tand(beta_2))^2)); // blade angle\n",
"u=ca*(tand(beta_1)+tand(beta_2)); // mean velocity of blade\n",
"N=60*u/(3.14*D*10^-2*60); // Speed in rps\n",
"Po=rp/rpls; // Total pressure at inlet to the last stage\n",
"T0=T0ls; // Total temperature to the last stage\n",
"Tst=T0-c1^2/(2*Cp); // Static temperature\n",
"Pst=Po/(T0/Tst)^((r-1)/r); // Static pressure\n",
"row=(Pst*10^5)/(R*Tst); // Density\n",
"h=m/(ca*row*3.14*D*10^-2);// Length of last stage\n",
"\n",
"disp (Ns,'Number of stages = ');\n",
"disp (rp1,'Pressure ratio across first stage = ');\n",
"disp ('   (roundoff error)',rpls,'Temperature at inlet to last stage = ');\n",
"disp ('degree   (roundoff error)',beta_1,'beta1=' );\n",
"disp ('rps   (roundoff error)',N,'Speed = ');\n",
"disp ('cm   (roundoff error)',h*100,'Length of last stage = ');"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 9.8: Calculation_of_the_stage_stagnation_pressure_ratio_and_the_power_input.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"clc;\n",
"N=6000; // Speed in rpm\n",
"Del_rise=20; // Stagnation temperature rise in kelvin\n",
"wf=0.93; // Work done factor eff_c=0.89; // Isentropic efficiency of the state \n",
"c1=140; // Inlet velocity in m/s\n",
"p01=1.01; // Ambient pressure in bar\n",
"T01=288; // Ambient temperature in kelvin\n",
"M1=0.95; // Mach number\n",
"Cp=1.005; // Specific heat in J/kg K\n",
"r=1.4; // Specific heat ratio\n",
"R=287; // Characteristic gas constant in J/kg K\n",
"H_T_ratio=0.6; // Hub tip ratio in \n",
"eff_s=0.89; // Stage efficiency\n",
"T1=T01-c1^2/(2*Cp*10^3);\n",
"w1=M1*sqrt (r*R*T1);\n",
"beta_1=acosd (c1/w1);\n",
"u=w1*sind (beta_1);\n",
"beta_2=atand (tand(beta_1)-((Cp*10^3*Del_rise)/(u*wf*c1)));\n",
"p1=p01/(T01/T1)^(r/(r-1));\n",
"row_1=(p1*10^5)/(R*T1);\n",
"Rtip=60*u/(2*3.14*N);\n",
"Rroot=H_T_ratio*Rtip;\n",
"Rm=(Rtip+Rroot)/2;\n",
"h=Rtip-Rroot;\n",
"m=row_1*2*3.14*Rm*h*c1;\n",
"rp=(1+(eff_s*Del_rise)/(T01))^(r/(r-1));\n",
"P=m*Cp*Del_rise;\n",
"uroot=2*3.14*Rroot*N/60;\n",
"beta_1root=atand (uroot/c1);\n",
"beta_2root=atand (tand (beta_1root)-((Cp*10^3*Del_rise)/(wf*uroot*c1)));\n",
"\n",
"disp ('degree',beta_2,'beta 2 = ','degree',beta_1,'beta 1 = ','Rotor air angles at tip:','m',Rtip,'Tip Radius = ','(i). ');\n",
"disp ('kg/s   (Roundoff error)',m,'Mass flow rate = ','(ii).');\n",
"disp ('kW',P,'Power input = ',rp,'Stagnation pressure ratio = ','(iii).');\n",
"disp ('degree',beta_2root,'beta 2 = ','degree',beta_1root,'beta 1 = ','Rotor air angles at root sections','(iv).');\n",
""
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 9.9: EX9_9.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"clc;\n",
"rp=1.35; // Actual pressure ratio\n",
"DelT_rise=30; // Actual temperature rise in K\n",
"beta_1=47; // Inlet blade angle in degree\n",
"beta_2=15; // Outlet blade angle in degree\n",
"u=225; // Peripheral velocity in m/s\n",
"ca=180; // Axial velocity in m/s\n",
"T01=27+273; // Ambient temperature in kelvin\n",
"Cp=1.005; // Specific heat in KJ/kg K\n",
"r=1.4; // Specific heat ratio\n",
"R=287; // Characteristic gas constant in J/kg K\n",
"\n",
"eff_s=(rp^((r-1)/r)-1)*T01/DelT_rise;\n",
"wf=(DelT_rise*Cp*10^3)/(u*ca*(tand(beta_1)-tand(beta_2)));\n",
"\n",
"disp ('%',eff_s*100,'Stage Efficiency = ');\n",
"disp (wf,'Work done factor = ');"
   ]
   }
],
"metadata": {
		  "kernelspec": {
		   "display_name": "Scilab",
		   "language": "scilab",
		   "name": "scilab"
		  },
		  "language_info": {
		   "file_extension": ".sce",
		   "help_links": [
			{
			 "text": "MetaKernel Magics",
			 "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
			}
		   ],
		   "mimetype": "text/x-octave",
		   "name": "scilab",
		   "version": "0.7.1"
		  }
		 },
		 "nbformat": 4,
		 "nbformat_minor": 0
}