summaryrefslogtreecommitdiff
path: root/Fundamentals_of_Turbomachinery_by_W_W_Peng/9-Steam_Turbines.ipynb
blob: df6f1b2ca603af55df3fe433880f188164235cc2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
{
"cells": [
 {
		   "cell_type": "markdown",
	   "metadata": {},
	   "source": [
       "# Chapter 9: Steam Turbines"
	   ]
	},
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 9.1: ST.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"clear all; clc;\n",
"\n",
"rm=8/12\n",
"N=7500\n",
"U=rm*N*%pi/30\n",
"printf('The peripheral velocity is calculated as U= %0.1f ft/s\n\n',U)\n",
"\n",
"disp('From equation 9.1 we have U/V1=sinα1/4')\n",
"//let x= U/V1\n",
"alpha1=70*%pi/180\n",
"x=(sin(alpha1))/4\n",
"printf('\n Thus U/V1= %0.4f',x)\n",
"\n",
"V1=U/x\n",
"printf('\n Thus V1= %0.1f ft/s',V1)\n",
"\n",
"disp('From velocity diagram at station1 we have V1sinα1-W1sinß1=U and V1cosα1=W1cosß1 or W1sinß1')\n",
"//let y= W1sinß1\n",
"V1=2228.8\n",
"U=523.6\n",
"y=V1*sin(alpha1)-U\n",
"printf('\n Hence W1sinß1= %0.1f ft/s',y)\n",
"\n",
"//Let z=W1cosß1\n",
"z=V1*cos(alpha1)\n",
"printf('\n Thus W1cosß1= %0.1f ft/s',z)\n",
"\n",
"disp('Hence tanß1=2.06')\n",
"tanbeta1=2.06\n",
"beta1=(atan(tanbeta1))*180/%pi\n",
"printf('\n Thus beta1= %0.1f degrees and W1=1746 ft/s',beta1)\n",
"\n",
"disp('At station 2 we have W2sinß2-V2sinα2=U and V2cosα2=W2cosß2,with W2=W1=1746ft/s and ß1=ß2=64.1 degrees')\n",
"//Let l=V2sinα2\n",
"l=1746*sin(64.1*%pi/180)-523.6\n",
"printf(' Thus V2sinα2=%0.0f ft/s',l)\n",
"\n",
"//m=V2cosα2\n",
"m=1746*cos(64.1*%pi/180)\n",
"printf('\n V2cosα2 %0.2f ft/s',m)\n",
"\n",
"disp('Hence tanα2=1.373')\n",
"tanalpha2=1.373\n",
"alpha2=((atan(tanalpha2)*180/%pi))\n",
"printf(' Hence α2= %0.2f degrees',alpha2)\n",
"\n",
"disp('Hence V2=1295.2 ft/s')\n",
"\n",
"disp('At station 3 we have V3sinα3-W3sinα3=U=523.6ft/s')\n",
"disp('Also W3cosß3=V3cosα3')\n",
"//let n=V3cosα3\n",
"V3=1295.2\n",
"alpha3=53.9*%pi/180\n",
"n=V3*cos(alpha3)\n",
"printf(' Thus W3cosß3= %0.1f ft/s',n)\n",
"\n",
"disp('Hence tanß3=0.685')\n",
"tanbeta3=0.685\n",
"beta3=((atan(tanbeta3))*180/%pi)\n",
"printf(' Hence ß3= %0.1f degrees',beta3)\n",
"\n",
"disp('Thus W3=925.1 ft/s')\n",
"\n",
"disp('Also W4=W3=925.1ft/s')\n",
"disp('ß4=ß3=34.4 degrees')\n",
"disp('And V4=VaV1cosß4')\n",
"beta4=34.4*%pi/180\n",
"//let y=Va*V1\n",
"y=925.0848\n",
"V4=y*cos(beta4)\n",
"printf(' Thus V4= %0.1f ft/s',V4)\n",
"disp('α4=0 degrees')\n",
"\n",
"disp('From these velocities,the energy transfers of the rotors can be calculated')\n",
"\n",
"U=523.6\n",
"V1=2228.8\n",
"alpha1=70*%pi/180\n",
"V2=1295.2\n",
"alpha2=53.9*%pi/180\n",
"delta_E1=U*(V1*sin(alpha1)+V2*sin(alpha2))\n",
"printf(' Thus delta_E1= %0.1f ((ft/s)^2)',delta_E1)\n",
"\n",
"delta_E1=1.643*(10^6)/(32.2*778)//converting units from (ft/s)^2 to Btu/lb\n",
"printf('\n On converting to Btu/lb we have delta_E1=%0.1f Btu/lb',delta_E1)\n",
"\n",
"V3=1295.2\n",
"alpha3=alpha2\n",
"delta_E2=U*(V3*sin(alpha3))\n",
"printf('\n delta_E2=%0.1f ((ft/s)^2)',delta_E2)\n",
"delta_E2=0.546*(10^6)/(32.2*778)\n",
"printf('\n On converting to Btu/lb we have delta_E2=%0.1f Btu/lb',delta_E2)\n",
"\n",
"delta_Ec=65.6+21.8\n",
"printf('\n Hence the total energy transfer is delta_Ec= %0.1f Btu/lb',delta_Ec)\n",
"disp('To compare with that calculated with equation9.3,we have delta_Ec=8*U^2')\n",
"delta_Ec=8*(U^2)\n",
"printf(' delta_Ec= %0.2f ((ft/s)^2)',delta_Ec)\n",
"delta_Ec=2.19*10^6/(32.2*778)//converting units\n",
"printf('\n On converting we have delta_Ec= %0.2f Btu/lb',delta_Ec)//answer given in the book is 87.5,however 87.42 is more accurate\n",
"\n",
"disp('The difference is due to round off error.')\n",
"disp('The static enthalpies and pressure at stations 1,2,3 and 4 are same for the ideal case and can be calculated from h1=h01-((V1)^2)/2 ')\n",
"disp('Where h01=h0i=1405Btu/lb from the Mollier diagram for p0i=3000 psia,T01=950 degrees Farenheit')\n",
"//let l=(V1^2)/2\n",
"V1=2228.8\n",
" l=(V1^2)/(2*32.2*778)\n",
"printf(' Thus (V1^2)/2 = %0.0f Btu/lb',l)\n",
"\n",
"disp('Hence we have h1=1306 Btu/lb and p1=1400psia')\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
""
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 9.2: ST.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"clear all; clc;\n",
"\n",
"disp('To use Figure 9.8,with Qf=ΣU^2/delta_Hs=2*g_c*lambda^2*R_H')\n",
"disp('The value of R_H can be estimated with equation 8.4.')\n",
"disp('Using k=1.3 for steam and suusming ETA_p=0.90 we have ETAad=[1-(p_e/p_i)^(ETAp*(k-1)/k)]/[1-(p_e/p_i)^(k-1)/k]=0.931')\n",
"\n",
"ETA_ad=0.931\n",
"ETA_p=0.90\n",
"R_H=ETA_ad/ETA_p\n",
"printf(' R_H=ETA_ad/ETA_p= %0.3f',R_H)\n",
"\n",
"disp('For impulse stages,the optimal efficiencies occur at lambda=U/V2=sinα2/2=0.47 with alpha2=70 degrees')\n",
"QF=2*25052*(0.47^2)*1.035\n",
"printf(' So Qf can be calculated as %0.0f',QF)\n",
"\n",
"disp('From figure 9.8, the efficiency can be estimated as ETA=83%')\n",
"\n",
"disp('From the Mollier diagram in figure A1 we have hi=1525 Btu/lbm,hse=1150 Btu/lbm,with s_i=s_es=1.8Btu/lb-R')\n",
"delta_Hs=1525-1150\n",
"printf(' Hence delta_Hs=%0.0f Btu/lbm',delta_Hs)\n",
"\n",
"summation_sqr(U)=11455*375\n",
"printf('\n So we have ΣU^2=%0.0f ((ft/s)^2)',summation_sqr(U))\n",
"\n",
"disp('With 10 identical stages,we have U^2=429562')\n",
"sqr(U)=429562\n",
"U=sqrt(sqr(U))\n",
"printf(' Thus U= %0.0f ft/s',U)\n",
"\n",
"omega=3600*%pi/30\n",
"D=2*U/omega\n",
"printf('\n The turbine diameter D= %0.3f ft',D)//The answer has been incorrectly rounded off to 3.47 in the book. A more accurate answer is provided here.\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
""
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 9.3: ST.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"clear all; clc;\n",
"\n",
"disp('The tangential velocity at the rotor mean radius is Um')\n",
"rm=1.5\n",
"N=3600\n",
"Um=rm*N*%pi/30\n",
"printf('Um=rm*N*pi/30= %0.1f',Um)\n",
"\n",
"disp('From the velocity diagram in figure 8.11 for the impulse stages we have delta_h0')\n",
"disp('delta_h0=delta_Et=UmVu2-UmVu3/g_c=UmVu2/g_c=2((Um)^2)/gc')\n",
"Um=565.5\n",
"gc=32.2\n",
"delta_h0=2*((Um)^2)/gc\n",
"printf('\n delta_h0= %0.0f lbf-ft/lbm=25.5 Btu/lbm',delta_h0)\n",
"\n",
"disp('From the Mollier diagram in appendix A, we have hoi=1565 Btu/lbm')\n",
"disp('For the stages with constant mean radi,we have hoi-hoe=n_s*delta_hoe or hoe=h0i-n_s*delta_hoe')\n",
"h_oe=1565-(12*25.5)\n",
"printf(' hoe= %0.0f Btu/lbm.',h_oe)\n",
"\n",
"disp('Also from ETA_ad=(hoi-hoe)/(hoi-hsoe), we have hsoe=hoi-(hoi-hoe)/ETA_ad')\n",
"h_soe=1565-306/0.85\n",
"printf(' hsoe= %0.0f Btu/lbm',h_soe)\n",
"\n",
"disp('From s_soe=Soi=1.69 Btu/(lbm-R),we have poe=50 psia and Toe=450 degrees Farenheit')\n",
"disp('Also from given efficiencies we have Ps=ETAv*ETAm*m*n_s*delta_ho')\n",
"Ps=0.92*0.90*7*12*19863/550\n",
"printf(' Ps=%0.0f hp',Ps)\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
""
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 9.4: ST.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"clear all; clc;\n",
"\n",
"disp('Based on the law of Willian we have m_t=0.5+CP_s')\n",
"C=(7-0.5)/2512\n",
"printf(' Where C= %0.4f lbm/(hp-s)\n',C)\n",
"\n",
"disp('So we have SR=mt/Ps=0.5/Ps+(2.6*10^-3)')\n",
"disp('And HR=Q_h*SR')\n",
"\n",
"\n",
"disp('OR at full load,')\n",
"SR_1=(0.5/2512)+(2.6*10^-3)\n",
"printf('\n SR_1= %0.4f lbm/(hp-s)=10.1 lbm/(hp-h)',SR_1)\n",
"\n",
"HR_1=1750*10.1\n",
"printf('\n HR_1=%0.0f Btu/(hp-h)',HR_1)\n",
"\n",
"\n",
"disp('at 50% load,')\n",
"SR_2=(0.5/1256)+(2.6*10^-3)\n",
"printf('\n SR_2= %0.4f lbm/(hp-s)=10.8 lbm/(hp-h)',SR_2)\n",
"\n",
"HR_2=1750*10.8\n",
"printf('\n HR_2=%0.0f Btu/(hp-h)',HR_2)\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
""
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 9.5: ST.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"clear all; clc;\n",
"\n",
"disp('To calculate the thermal efficiency,the units have to be consisitent. With hp=0.707 Btu/s=2545Btu/h, we have ETAth=Ps+Qe/Qin')\n",
"ETA_th=(2512*0.707+1259*7)/(7*1750)\n",
"printf(' Thus ETA_h= %0.3f',ETA_th)\n",
"\n",
"ETA_th=2512*0.707/(7*1750)\n",
"printf('\n For the simple shaft power system,we have ETA_th= %0.3f',ETA_th)\n",
"\n",
"ETA_th=2545/17675\n",
"printf('\n From the heat rate,ETA_th=2545/HR %0.3f',ETA_th)\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
""
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 9.6: Steam_Turbines.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"clear all; clc;\n",
"\n",
"disp('The enthalpies at various points have t be determined first. For the steam turbine cycle,fro the Mollier diagram or steam tables,we have h1=hf1=83.6')\n",
"\n",
"h2=83.6+(0.0185*(1000-1.5)*144)/(778*0.80)\n",
"printf(' h2=h1+nu*deltap/ETA_p =%0.1f Btu/lbm',h2)\n",
"\n",
"disp('h3=1447 Btu/lbm')\n",
"\n",
"disp('s_s4=s3=1.61 Btu/(lbm-R)')\n",
"\n",
"disp('hs4=925 Btu/lbm')\n",
"\n",
"disp('Hence from ETAst=(h3-h4)/(h3-hs4) we have h4=h3-(h3-hs4)*ETAst')\n",
"h3=1447\n",
"hs4=925\n",
"ETA_st=0.85\n",
"h4=h3-(h3-hs4)*ETA_st\n",
"printf(' h4= %0.0f Btu/lbm',h4)\n",
"\n",
"h4=1003\n",
"h2=87.9\n",
"h1=83.6\n",
"ETA_ths=[(h3-h4)-(h2-h1)]/(h3-h2)\n",
"printf('\n The thermal efficiency of the steam turbine cycle is then obtained as ETA_th,s=(Wst-Wp)/(Qin,s)=%0.4f ',ETA_ths)//it has been rounded off to 32.3 in the book\n",
"\n",
"disp('For the gas turbine cycle, an ideal gas with constant Cp is assumed for the working gas. With Cp=0.24 Btu/(lbm-R) and k=1.4 we have T6')\n",
"T5=540\n",
"//Let n=p6/p5 and m= (k-1)/k\n",
"n=15\n",
"m=0.2857\n",
"ETAc=0.82\n",
"T6=T5+[T5*({(n)^(m)}-1)]/ETAc\n",
"printf('\n T6= %0.0fR=849 degrees Farenheit',T6)\n",
"\n",
"T7=2560\n",
"//let b=(1/15)^0.2857\n",
"b=0.461\n",
"ETA_gt=0.85\n",
"T8=T7-T7*[1-b]*ETA_gt\n",
"printf('\n T8=%0.0f R= 928 degrees Farenheit',T8)\n",
"\n",
"disp('Which should be greater than T3')\n",
"T7=2560\n",
"T8=1388\n",
"T6=1309\n",
"T5=540\n",
"ETA_thg=[(T7-T8)-(T6-T5)]/(T7-T6)\n",
"printf('\n The thermal efficiency of the gas turbine is obtained as %0.3f=32.2 percent',ETA_thg)\n",
"\n",
"disp('From the energy balance equation across  the HRSG,we have m_g*Cp*(T8-T9)')\n",
"disp('ms/mg=[Cp*(T8-T9)]/(h3-h2)')\n",
"//let x=ms/mg\n",
"Cp=0.24\n",
"T8=928\n",
"T9=450\n",
"h3=1447\n",
"h2=87.9\n",
"x=[Cp*(T8-T9)]/(h3-h2)\n",
"printf('\n Thus ms/mg=%0.3f',x)\n",
"\n",
"disp('Hence the thermal efficiency of the combined cycle is obtained as ETA_th,c=[(Wgt-Wc)+(ms/mg)*(Wst-Wp)]/[Cp*(T7-T6)]')\n",
"ETA_thc=[0.24*(1172-769)+0.084*(439.7)]/(0.24*1251)\n",
"printf('\n ETA_th,c= %0.3f=44.5 percent',ETA_thc)\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
""
   ]
   }
],
"metadata": {
		  "kernelspec": {
		   "display_name": "Scilab",
		   "language": "scilab",
		   "name": "scilab"
		  },
		  "language_info": {
		   "file_extension": ".sce",
		   "help_links": [
			{
			 "text": "MetaKernel Magics",
			 "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
			}
		   ],
		   "mimetype": "text/x-octave",
		   "name": "scilab",
		   "version": "0.7.1"
		  }
		 },
		 "nbformat": 4,
		 "nbformat_minor": 0
}