1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 8: Gas Turbines"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 8.1: GT.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clear all; clc;\n",
"\n",
"disp('From ETAad=(1-((p0e/p0i)^(ETAs*(k-1)/k)))/(1-((p0e/p0i)^(k-1)/k)))')\n",
"ETA_ad=(1-((14.7/200)^(0.85/3.5)))/(1-(14.7/200)^(0.2857))\n",
"printf('\n ETAad= %0.3f',ETA_ad)\n",
"\n",
"disp('T_soe/T_0i=((p0e/p0i)^((k-1)/k))')\n",
"//let T_soe/T_0i=w\n",
"w=(14.7/200)^0.2857\n",
"printf('\n T_soe/T_0i= %0.4f',w)\n",
"\n",
"T_soe=0.4743*(1800+460)\n",
"printf('\n T_soe= %0.0f R',T_soe)\n",
"\n",
"disp('ETAad=(T_0i-T_0e)/(T_0i-T_soe)=0.893')\n",
"T_0i=T_soe/w//since T_soe/T_0i=w\n",
"T_0e=T_0i-(ETA_ad*(T_0i-T_soe))\n",
"printf(' Thus T_0e= %0.0f R=739 degrees Farenheit',T_0e)\n",
"\n",
"disp('Also for impulse turbine, we have ß2=ß3.Hence from delta_H0=Um*(V_u2-V_u3)=Um*[Um+Va*tanß2-(Um-Va*tan(ß3))]=2*Um*Va*tanß')\n",
"delta_h0=2*750*400*tan(50*%pi/180)\n",
"printf('\n delta_h0= %g is approximately equal to 7.15*10^5 ((ft/s)^2)',delta_h0)\n",
"//Let 0.24*778*32.2*delta_T0=u\n",
"u=7.15*10^5\n",
"delta_T0=u/(0.24*778*32.2)\n",
"printf('\n\n Or 0.24*778*32.2*delta_T0=7.15*10^5,we have temperature rise per stage = %0.0f degrees Farenheit',delta_T0)\n",
"\n",
"n_s=(1800-739)/119\n",
"printf('\n Hence the number of stages n_s= %0.2f is approximately equal to 9',n_s)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 8.2: GT.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clear all; clc;\n",
"\n",
"disp('Referring to figure 8.3,we have T_s2=T_01*((p2/p01)^((k-1)/k))')\n",
"T_01=2860\n",
"p2=180\n",
"p01=250\n",
"k=1.4//k=(Cp/Cv)\n",
"T_s2=T_01*((p2/p01)^((k-1)/k))\n",
"printf(' T_s2= %0.0f R',T_s2)\n",
"\n",
"disp(' From ε_s=(h2-hs2)/((V_2^2)/2),we have Cp*(T2-Ts2=ε_s*(V_2^2)/2.Combining with Cp*(T_02-T_2)=((V_2^2)/2),where T02=T01, we have Cp*(T_02-Ts2)=(1+εs)*((V_2^2)/2)')\n",
"disp('V2=[2*Cp*(T_02-T_s2)/(1+εs)]^0.5')\n",
"T_02=T_01\n",
"Cp=0.24*778*32.2\n",
"epsilon_s=0.07\n",
"T_s2=2604\n",
"V2=[2*Cp*(T_02-T_s2)/(1+epsilon_s)]^0.5\n",
"printf(' V2= %0.0f ft/s',V2)\n",
"\n",
"V2=1696\n",
"alpha2=65*%pi/180//converting to radians\n",
"V_u2=V2*sin(alpha2)\n",
"printf('\n Hence we have V_u2=V2*sin(α2) = %0.0f ft/s',V_u2)\n",
"\n",
"Va=V2*cos(alpha2)\n",
"printf('\n Va=V2*cos(alpha2)= %0.1f ft/s',Va)\n",
"\n",
"disp('T2=T_02-(V_2^2)/(2*Cp)')\n",
"T_02=2860\n",
"V2=1696\n",
"Cp=0.24*778*32.2\n",
"T2=T_02-(V2^2)/(2*Cp)\n",
"printf(' Hence we have T2= %0.0f R ',T2)\n",
"\n",
"disp('Since V1=Va,we have T1=T_01-((V1^2)/(2*Cp))')\n",
"V1=716.8\n",
"T_01=2860//2860R\n",
"T1=T_01-((V1^2)/(2*Cp))\n",
"printf('T1= %0.0f R',T1)\n",
"\n",
"disp('From delta_E=Cp*delta_T0s=U*(V_u2+V_u3)=U*V_u2, we have U=Ps/(m*V_u2)')\n",
"Ps=375*550*32.2//converting unit of Ps\n",
"m=3\n",
"V_u2=1537\n",
"U=Ps/(m*V_u2)\n",
"printf('U=%0.0f ft/s',U)\n",
"\n",
"disp('φ=Va/U')\n",
"Va=716.8\n",
"U=1440\n",
"phi=Va/U\n",
"printf('φ=%0.3f',phi)\n",
"\n",
"tanbeta3=U/Va\n",
"printf('\n tanß3= %0.2f',tanbeta3)\n",
"\n",
"beta3=((atan(tanbeta3))*180/%pi)\n",
"printf('\n ß3= %0.1f degrees',beta3)\n",
"\n",
"alpha3=0\n",
"phi=0.498\n",
"alpha2=65*%pi/180\n",
"R=1+((phi/2)*(tan(alpha3)-tan(alpha2)))\n",
"printf('\n R= %0.3f',R)\n",
"\n",
"disp('Also from the velocity diagram in figure 8.4,we have tanß2=tanα2-(1/φ)=0.136,so ß2=7.8 degrees')\n",
"disp('Similarly we have W3=Va/cosß3=1606 ft/s and W2=Va/cosß2=723.5 ft/s')\n",
"disp('Across the rotor we have h2+(W2^2)/2=h3+(W3^2)/2. Hence T3=T2+(W2^2)-(W3^2)/(2*Cp)=2450R')\n",
"disp('We have Ts3=T3-εr*(W3^2)/(2*Cp)=2424R')\n",
"disp('Also p3=p2*(Ts3/T2)^(k/(k-1))=136.9 psia')\n",
"ETAs=(1+(0.12*(1606^2)+0.07*(1696^2)*(2450/2621))/(2*0.24*778*32.2*(2817-2450)))^-1\n",
"printf(' From equation 8.2 we have ETAs= %0.4f',ETAs)\n",
"\n",
"//Let j=0.498/2\n",
"j=0.498/2\n",
"//Let k=0.12*[(sec(63.5*%pi/180))^2]\n",
"k=0.12*[(sec(63.5*%pi/180))^2]\n",
"//Let l=0.07*(2450/2621)*[(sec(65*%pi/180))^2]\n",
"l=0.07*(2450/2621)*[(sec(65*%pi/180))^2]\n",
"//let m=tan(63.5*%pi/180)+tan(7.8*%pi/180)\n",
"m=tan(63.5*%pi/180)+tan(7.8*%pi/180)\n",
"\n",
"ETAs=[1+((j*(k+l))/m)]^-1\n",
"printf('\n From equation 8.3 we have ETAs= %0.4f',ETAs)\n",
"\n",
"disp('Also ETAs can be calculated from ETAs=(T_01-T_03)/(T_01-T_ss03)')\n",
"disp('We have T_03=T3+V3^2/(2*Cp)')\n",
"disp('p03=p3*(T_03/T3)^(k/(k-1))')\n",
"disp('T_ss03=T_01*(p_03/(p_01)*((k-1)/k))')\n",
"ETAs=(2860-2493)/(2860-2450)\n",
"printf(' Hence we have ETAs= %0.3f',ETAs)\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
""
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 8.3: GT.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clear all; clc;\n",
"\n",
"disp('Use the velocity diagram shown in figure 8.2 or 8.4')\n",
"disp('We have Vatanß2=Vatanα2-Um')\n",
"disp('Or tanß2=tanα2-Um/Va')\n",
"\n",
"tanbeta2=tan(75*%pi/180)-1200/500\n",
"printf(' Thus tanß2= %0.2f',tanbeta2)\n",
"beta2=((atan(tanbeta2))*180/%pi)\n",
"printf('\n Thus ß2= %0.2f',beta2)\n",
"\n",
"disp('Also Vatanß3=Vatanα3+Um')\n",
"disp('tanß3=tanα3+Um/Va')\n",
"tanbeta3=tan(10*%pi/180)+1200/500\n",
"printf(' tanß3= %0.2f',tanbeta3)\n",
"beta3=((atan(tanbeta3))*180/%pi)\n",
"printf('\n ß3= %0.2f',beta3)\n",
"\n",
"disp('From Cp*deltaT0s=deltaE=Um(Vu2+Vu3)=UmVa(tanα2+tanα3)')\n",
"deltaE=1200*500*(tan(75*%pi/180)+tan(10*%pi/180))\n",
"printf(' Thus Cp*deltaT0s=deltaE= %g=2.34*10^6 ((ft/s)^2)',deltaE)\n",
"\n",
"deltaT0s=(2.34*(10^6))/(0.24*778*32.2)\n",
"disp('deltaT0s=(2.34*(10^6))/(0.24*778*32.2)')\n",
"printf(' Thus deltaT0s= %0.2f R which is rounded off to 890R',deltaT0s)\n",
"\n",
"disp('Hence neglecting leakage and mechanical losses , we have shaft power output Ps=mCpdeltaT0s')\n",
"Ps=50*2.34*(10^6)/(32.2*550)\n",
"printf('\n Hence we have Ps= %0.2f hp wich is rounded off to 6607hp',Ps)\n",
"\n",
"disp('The degree of reaction at the mean radius can be determined from equation 8.5A')\n",
"R=(500/(2*1200))*(tan(68.8*%pi/180)-tan(53.1*%pi/180))\n",
"printf('\n Thus R = %0.3f',R)\n",
"\n",
"disp('To determine the radii the flow area A2 can be determined from m=rho2*A2*Va. The density rho2 can be determined from p2 and T2 which can be caalculated as follows.')\n",
"disp('From Cp*T02=CpT2+V2^2/2 and V2= VA/cosα2')\n",
"V2=500/(cos(75*%pi/180))\n",
"printf('\n V2= %0.0f ft/s',V2)\n",
"\n",
"T2=2000-(1932^2)/(2*0.24*778*32.2)\n",
"printf('\n Thus we have T2= %0.0f degrees Farenheit = 2150R',T2)\n",
"\n",
"disp('From the definition of loss coefficient εe we have Ts2=T2-εsV2^2/(2*Cp)')\n",
"Ts2=1690-(0.08*(1932^2))/(2*.24*778*32.2)\n",
"printf('\n Ts2= %0.2f degrees Farenheit which is equal to 2125.2R',Ts2)\n",
"\n",
"//Let x= P2/p01\n",
"x=(2125.2/2460)^(1.4/0.4)\n",
"printf('\n and P2/p01= %0.2f',x)\n",
"\n",
"\n",
"P2=200*0.60\n",
"printf('\n P2= %0.0f psia',P2)\n",
"\n",
"disp('Hence the density can be calculated as rho2=p2/(R*T2)')\n",
"\n",
"rho2=120*144/(53.3*2150)\n",
"printf('\n Thus ro2=%0.3f lbm/ft^3',rho2)\n",
"\n",
"A2=50/(0.151*500)\n",
"printf('\n A2=m/(rho2*Va)=%0.3f ft^2',A2)\n",
"\n",
"//let y=rt^2-rh^2\n",
"y=0.662/%pi\n",
"printf('\n rt^2-rh^2=A2/pi=%0.3f',y)\n",
"\n",
"rm=30*1200/(8000*%pi)\n",
"printf(' and rm= %0.2f ft',rm)\n",
"\n",
"disp('rt^2+rh^2=2*rm^2=4.09ft^2')\n",
"disp('and 1.466ft,rh=1.393ft')\n",
"rt=1.466\n",
"rh=1.393\n",
"b=rt-rh\n",
"printf(' b= %0.3f ft=0.88in',b)\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
""
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 8.4: GT.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clear all; clc;\n",
"\n",
"disp('For N/(T01^1/2)=40,the following data of p02/p01,τ/p01 and Eta can be obtained from figure 8.9a')\n",
"//let x=p02/p01\n",
"x=[0.70 0.75 0.8];\n",
"//let y=τ/p01\n",
"y=[8.7 5.3 2.2];\n",
"Eta=[0.81 0.64 0.41];\n",
"//let z=Ps/(p01*((T01)^1/2))\n",
"z=[0.066 0.040 0.017];\n",
"//let i=m*((T01)^1/2)/p01\n",
"i=[2.48 2.34 2.0];\n",
"table=[x' y'Eta' z' i'];\n",
"disp(' The columns of the table are in the order p02/p01 τ/p01 Eta Ps/(p01*((T01)^1/2)) and m*((T01)^1/2)/p01')\n",
"disp(table)\n",
"\n",
"disp('The power and mass flow rate have to be obtained with the following manipulations. ')\n",
"disp('Frpm Ps=τ*omega, wee obtain:')\n",
"disp('Ps/(p01*((T01)^0.5))=τ*N*pi/(30*550*p01*((T01)^0.5))')\n",
"disp('Also from Ps/m=Eta*Cp*T01[1-(p02/p01)^((k-1)/k)] we obtain')\n",
"disp('m*(T01^0.5)/p01={[Ps/(p01*T01^0.5)]/(Eta*Cp)}*[1-(p02/p01)^((k-1)/k)]^-1')\n",
"disp('Where (k-1)/k=0.40/1.4')\n",
"\n",
"//Let j=(k-1)/k=0.40/1.4\n",
"j=0.40/1.4\n",
"printf('Thus=(k-1)/k %0.4f',j)\n",
"\n",
"disp('And Cp= 0.24*Btu/(1bm*R)')\n",
"Cp=0.24*778/(550)\n",
"printf('Thus Cp= %0.4f hp-s/(lbm*R)',Cp)\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
""
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 8.5: GT.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clear all; clc;\n",
"\n",
"disp('From Um=rm*omega')\n",
"disp('We have rm=30*Um/(N*pi)')\n",
"rm=30*850/(8000*%pi)\n",
"printf(' Thus rm= %0.2f ft=12.1 in',rm)\n",
"\n",
"disp('rm=(rt^2+rh^2/2)^0.5 or rt^2+rh^2=293.8')\n",
"disp('Combined with b=rt-rh=4 in,we have rt^2-4rt-138.9=0,thus rt=13.95 in')\n",
"\n",
"disp('and rh=9.95 in')\n",
"\n",
"disp('To find the number of stages required the exhaust air temperature can be estimated as T0e=T0i*(p0e/p0i)^((k-1)/k)')\n",
"T0e=1400*(14.7/60)^0.2857\n",
"printf(' Thus T0e= %0.1f R',T0e)\n",
"\n",
"disp('The maximum energy available per unit mass of air is delta_Hs=Cp*(T0i-T0e)')\n",
"delta_Hs=0.24*(1400-936.7)\n",
"printf(' delta_Hs= %0.1f Btu/lbm',delta_Hs)\n",
"\n",
"disp('The maximum energy transfer per stage with an impulse turbine is deltaEi=2*Um^2')\n",
"delta_Ei=2*(850^2)/(32.2*778)\n",
"printf(' delta_Ei= %0.2f Btu/lbm',delta_Ei)\n",
"\n",
"disp('Hence the required number of stages is ETAsi=delta_Hs/delta_Ei')\n",
"ETAsi=111.2/57.68\n",
"printf(' ETAsi= %0.2f which is approximately equal to 2',ETAsi)\n",
"\n",
"disp('With the reaction turbine stages,it will be delta_Er=Um^2')\n",
"delta_Er=850^2/(32.2*778)\n",
"printf(' delta_Er= %0.2f Btu/lbm',delta_Er)\n",
"disp('And ETAse=3.85 is approximatly equal to 4')\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
""
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 8.6: GT.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clear all; clc;\n",
"\n",
"disp('From figure 8.14c we have Pl=620hp at N=18400rpm. Pick a point on the curve of N/(T01^0.5)=18400/(530^0.5)=800')\n",
"disp('In figure 8.14a,say p02/p01=5')\n",
"disp('So we have')\n",
"\n",
"disp('m(T01^0.5)/p01 ETAc p02(psia) m(lbm/s) p03(psia) p03/p04')\n",
"disp(' 5.7 0.85 73.5 3.64 71.5 4.86')\n",
"\n",
"disp('where p02=5*14.7')\n",
" p02=5*14.7\n",
" printf(' Thus p02= %0.2f',p02)\n",
" \n",
"disp('m=5.7*14.7/(530^0.5)')\n",
" m=5.7*14.7/(530^0.5)\n",
" printf(' m= %0.2f',m)\n",
" \n",
"disp('73.5-2')\n",
" p03=73.5-2\n",
" printf(' m= %0.2f psia',p03)\n",
" \n",
"//Let i=p03/p04\n",
"i=71.5/14.7\n",
"printf('\n p03/p04= %0.2f',i)\n",
"\n",
"disp('Then from figure 8.14b,with p03/p04 and m3=m2 we have')\n",
"disp('m(T01^0.5)/p01 T03(R) N/(T03^0.5) ETAt')\n",
"disp('2.56 2528 366 0.87')\n",
"\n",
"disp('where T03=(2.56*71.5/3.64)^2')\n",
"T03=(2.56*71.5/3.64)^2\n",
"printf(' T03= %0.2f',T03)\n",
"\n",
"disp('N/T03=18400/(2528^0.5)')\n",
"//let k=N/T03\n",
"k=18400/(sqrt(2528))\n",
"printf(' Thus T03= %0.2f',k)\n",
"\n",
"disp('So from equations (8.1),(7.4) and(8.11) we have:')\n",
"disp('delta_T034=ETAt*T03*[1-(p04/p03)^((k-1)/k)]')\n",
"delta_T034=0.87*2528*[1-(4.86)^(-0.248)]\n",
"printf(' delta_T034 = %0.0f R',delta_T034)\n",
"\n",
"disp('delta_T012=(T01/ETAc)*[(p02/p01)^((k-1)/k)-1]')\n",
"delta_T012=(530/0.85)*[(5^0.2857)-1]\n",
"printf(' delta_T012= %0.0fR',delta_T012)\n",
"\n",
"P0=3.64*(0.28*713-0.24*(364/0.95))\n",
"printf(' \n and P0=3.64*(0.28*713-0.24*(364/0.95))= %0.0f Btu/s=554hp, which is less than Pl',P0)\n",
"\n",
"disp('So we pick another point on the same curve , say p02/p01=5.2, and repeat the calculations ')\n",
"\n",
"disp('m(T01^0.5)/p01 ETAc p02(psia) m(lbm/s) p03(psia) p03/p04 m(T01^0.5)/p01 T03(R) N/(T03^0.5) ETAt')\n",
"disp('5.6 0.88 76.4 3.57 74.4 5.06 2.55 2824 346 0.85')\n",
"\n",
"delta_T034=0.85*2824*[1-(5.06^(-0.248))]\n",
"printf('\n The new delta_T034= %0.2fR',delta_T034)//the book has rounded off the value to 794R,the value calculated in this code is more accurate\n",
"\n",
"delta_T012=(530/0.88)*[(5.2^0.2857)-1]\n",
"printf('\n delta_T012= %0.0fR',delta_T012)\n",
"\n",
"P0=3.57*(0.28*794-0.24*362/0.95)\n",
"printf('\n Net output power P0= %0.0f Btu/s=660hp, which is much greater than Pl \n\n',P0)\n",
"\n",
"disp('Pick another point say p02/p01=5.15')\n",
"\n",
"disp('m(T01^0.5)/p01 ETAc p02(psia) m(lbm/s) p03(psia) p03/p04 m(T01^0.5)/p01 T03(R) N/(T03^0.5) ETAt')\n",
"disp('5.65 0.87 75.7 3.61 73.7 5.01 2.55 2710 353 0.86')\n",
"\n",
"delta_T034=0.86*2710*[1-(5.01^(-0.248))]\n",
"printf('\n\n From new values delta_T034= %0.0f R',delta_T034)\n",
"\n",
"delta_T012=(530/0.87)*[(5.15^(0.2857))-1]\n",
"printf('\n and delta_T012= %0.0f R',delta_T012)\n",
"\n",
"P0=3.61*(0.28*768-0.24*(364/0.95))\n",
"printf('also P0= %0.1f Btu/s =628hp',P0)\n",
"\n",
"disp('P0 is close to Pl')\n",
"disp('So the running point is around p02/p01=5.15, m(T01^0.5)/p01=5.65')\n",
"disp('and N/(T01^0.5)=800 on the compressor characteristics')\n",
"disp('It is not too close to the surge line and hence is safe.')\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
" \n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
""
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 8.7: GT.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clear all; clc;\n",
"\n",
"disp('Velocity diagrams at the rotor inlet and outlet are given.')\n",
"\n",
"disp('Velocities at the rotor inlet can be calculated .')\n",
"\n",
"r2=5/12\n",
"N=15000\n",
"U2=r2*N*%pi/30\n",
"printf(' U2=r2*N*pi/30 = %0.1f ft/s',U2)\n",
"\n",
"alpha2=85*%pi/180//converting to radians\n",
"V2=U2/sin(alpha2)\n",
"printf('\n V2= %0.0f ft/s',V2)\n",
"\n",
"Vr2=U2/(tan(alpha2))\n",
"printf('\n Vr2=W2= %0.1f ft/s',Vr2)\n",
"\n",
"disp('Hence from Cp(T02-T2)=V2^2/2, where T02=T01, we have')\n",
"T02=2000\n",
"V2=657\n",
"Cp=0.24*778*32.2\n",
"T2=T02-(V2^2)/(2*Cp)\n",
"printf('\n T2=T02-(V2^2)/(2*Cp) =%0.1fR',T2)\n",
"\n",
"disp('From εn=(T2-T2_dash)/((V2^2)/(2*Cp)), we have')\n",
"T2=1964.1\n",
"epsilon_n=0.08\n",
"V2=657\n",
"T2_dash=T2-epsilon_n*V2^2/(2*Cp)\n",
"printf(' T2_dash=T2-epsilon_n*V2^2/(2*Cp)= %0.1fR',T2_dash)\n",
"\n",
"p01=50\n",
"T2_dash=1961.2\n",
"T01=2000\n",
"//let i=(k/(k-1))\n",
"i=3.5\n",
"p2=p01*(T2_dash/T01)^i\n",
"printf('\n p2= %0.1f psia',p2)\n",
"\n",
"p2=46.7\n",
"R=53.3\n",
"T2=1964.1\n",
"rho2=p2*144/(R*T2)//conversion factor=144\n",
"printf('\n rho2= %0.3f lb,/ft^3',rho2)\n",
"\n",
"rho2=0.064\n",
"Vr2=57.3\n",
"A2=(2*%pi*5*2/144)\n",
"m=rho2*Vr2*A2\n",
"printf('\n So the mass flow rate m=rho2*Vr2*A2= %0.2f lbm/s',m)\n",
"\n",
"disp('Assuming whirl-free flow at the rotor outlet under the design condition, we have')\n",
"U2=654.5\n",
"delta_E=(U2)^2\n",
"printf('\n delta_E=U2*Vu2=U2^2 %g ((ft/s)^2)=428370/(32.2*550)=24.2hp/(lbm/s)',delta_E)\n",
"\n",
"m=1.60\n",
"delta_E=24.2//after converting to new units\n",
"Ps=m*delta_E\n",
"printf('\n Ps= %0.1f hp',Ps)\n",
"\n",
"rm3=2.06/12\n",
"Um3=rm3*N*%pi/30\n",
"printf('\n Um3= %0.2f ft/s',Um3)\n",
"\n",
"beta3=30*%pi/180//converting to radians\n",
"V3=Um3/(tan(beta3))\n",
"printf('\n V3 = %0.0f ft/s',V3)\n",
"\n",
"W3=Um3/sin(beta3)\n",
"printf('\n W3 = %0.2f ft/s',W3)//the value has been rounded off to 539.2 in the book,however the value found here is more accurate\n",
"\n",
"disp('The turbine efficiency can be determined from equations 8.12 and 8.13. Without detailed calculations wthe result is given as ETAt=0.691')\n",
"\n",
"disp('The exhaust pressure/temperature can be determined from te following calculations with the help of figure 8.21')\n",
"delta_E=428370/(32.2*778)\n",
"printf(' From Cp(T01-T03)=delta_E= %0.1fBtu/lbm',delta_E)\n",
"\n",
"disp('(T01-T03)/(T01-T3dash)=Etat=0.691')\n",
"\n",
"T03=2000-(17.1/0.24)\n",
"printf(' T03= %0.0f R',T03)\n",
"\n",
"T01=2000\n",
"T03=1929\n",
"ETAt=0.691\n",
"T3_dash=T01-(T01-T03)/ETAt\n",
"printf('\n T3_dash=T01-(T01-T03)/ETAt %0.0fR =',T3_dash)\n",
"\n",
"//let i=k/(k-1)\n",
"i=3.5\n",
"p01=50\n",
"T3_dash=1897\n",
"T01=2000\n",
"p3=p01*(T3_dash/T01)^i\n",
"printf('\n p3=p01*(T3_dash/T01)^i= %0.1f psia',p3)\n",
"\n",
"T2=1964.4\n",
"p3=41.6\n",
"p2=46.7\n",
"// Let l=(k-1)/k\n",
"l=0.2857\n",
"T3_dbldash=T2*(p3/p2)^(l)\n",
"printf('\n T3_dbldash=T2*(p3/p2)^(1/i)=%0.2fR',T3_dbldash)//answer given in the book is 1900.3 R,however the value tabulated here is more accurate\n",
"\n",
"T3_dbldash=1900.3\n",
"epsilon_r=0.45\n",
"W3=539.2\n",
"Cp=0.24*32.2*778\n",
"T3=T3_dbldash+epsilon_r*(W3^2)/(2*Cp)\n",
"printf('\n T3= %0.1f R',T3)\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
""
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Scilab",
"language": "scilab",
"name": "scilab"
},
"language_info": {
"file_extension": ".sce",
"help_links": [
{
"text": "MetaKernel Magics",
"url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
}
],
"mimetype": "text/x-octave",
"name": "scilab",
"version": "0.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|