1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 7: Axial Flow Compressors"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 7.1: AFC.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clear all; clc;\n",
"\n",
"disp('From (poe/poi)=[(Toi+ns*deltaTo)]^(k*eff*p/(k-1))')\n",
"disp('From the above mentioned equation we can find out the value of deltaTo')\n",
"delta_To=((8^(1/(3.5*0.87)))-1)*530/7\n",
"printf('deltaTo= %0.1f degrees Farenheit',delta_To)\n",
"\n",
"Q=450\n",
"r_m1=9\n",
"b=3\n",
"V_a1=(Q*144)/(2*%pi*r_m1*b)\n",
"printf('\n Thus Va1 = %0.0f fps',V_a1)\n",
"\n",
"N=12000\n",
"U=(N*%pi*9)/(30*12)\n",
"printf('\n N= %0.1f fps',U)\n",
"\n",
"disp('deltaho=U*Va*(tanß1-tanß2) and R=(Φ/2)*(tanß1+tanß2')\n",
"//let y= tanß1-tanß2\n",
"y=[(0.24*778*74.2*32.2)/(942.5*382)]\n",
"printf('\n Thus tanß1-tanß2= %0.2f',y)\n",
"\n",
"//let x=tanß1+tanß2\n",
"x=(0.5*2*942.5/382)\n",
"printf('\n Thus tanß1+tanß2= %0.3f',x)\n",
"\n",
"disp('Hence we get tanß1=1.853')\n",
"tanbeta1=1.853\n",
"beta_1=(atan(tanbeta1))*180/%pi\n",
"printf('\n The value of ß1= %0.1f degrees',beta_1)\n",
"disp('Also tanß2=0.613')\n",
"tanbeta2=0.613\n",
"beta_2=(atan(tanbeta2))*180/%pi\n",
"printf('\n The value of ß2=α1= %0.1f degrees',beta_2)\n",
"\n",
"disp('Ps=m*Cp*ns*deltaTo/etam')\n",
"P_s=(0.075*450*0.24*778*7*74.2)/(550*0.95)\n",
"printf('\n The total power required is Ps= %0.0f hp',P_s)\n",
"\n",
"disp('The adiabetic efficiency is given as ((poe/poi)^(((k-1)/k))-1/((Toe/Toi)-1)')\n",
"ETA_ad=0.811/0.979\n",
"printf('\n Thus adiabetic efficiency is %0.4f',ETA_ad)//answer given in the book is 0.827,but this is more accurate\n",
"\n",
"disp('ETAc=ETAm*ETAad')\n",
"ETA_m=0.95\n",
"ETA_ad=0.827\n",
"ETA_c=ETA_m*ETA_ad\n",
"printf(' Hence ETAc= %0.3f ',ETA_c)\n",
"disp('Thus ETAc=78.6%')\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
""
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 7.2: AFC.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clear all; clc;\n",
"\n",
"r_h=15\n",
"r_t=24\n",
"r_m=((r_h^2+r_t^2)/2)^0.5\n",
"printf('rm= %0.0f in',r_m)\n",
"\n",
"N=6000\n",
"r_m=20\n",
"U_m=N*%pi*r_m/(12*30)\n",
"printf('\n U_m= %0.2f ft/s',U_m)\n",
"\n",
"disp('We have psia=lamda*psi=lambda*phi*(tanßm1-tanßm2)')\n",
"//let x=tanßm1-tanßm2\n",
"x=(0.24*778*32.2*35)/(0.92*1047.2*450)\n",
"printf('\n Hence we can find out tanßm1-tanßm2= %0.3f',x)\n",
"\n",
"disp('From equation 7.2B for Rm=0.5 we have αm1=ßm2')\n",
"disp('We get values of tanαm1+tanßm1=2.325 and tanαm2+tanßm2=2.325')\n",
"\n",
"disp('Hence we have tanßm1-tanαm1=0.485')\n",
"\n",
"tanalpham1=0.92\n",
"alpham_1=((atan(tanalpham1)))*180/%pi\n",
"printf('\n Thus αm1= %0.1f degrees',alpham_1)\n",
"\n",
"tanalpham2=1.405\n",
"alpham_2=((atan(tanalpham2)))*180/%pi\n",
"printf('\n Thus αm2= %0.2f degrees',alpham_2)\n",
"\n",
"disp('To determine the flow angles at the hub and tip,we use the free vortex condition of Vur=const, or rhtanαh=rttanαt=rmtanαm.Hence the flow angles can be determined.')\n",
"\n",
"tanalphah1=0.92*20/15\n",
"printf('\n tanαh1= %0.3f',tanalphah1)\n",
"alpha_h1=((atan(tanalphah1)))*180/%pi\n",
"printf('\nThus αh1= %0.1f degrees',alpha_h1)\n",
"\n",
"tanalphat1=0.92*20/24\n",
"printf('\n\n tanαt1= %0.3f',tanalphat1)\n",
"alpha_t1=((atan(tanalphat1)))*180/%pi\n",
"printf('\n Thus αt1= %0.1f degrees',alpha_t1)\n",
"\n",
"tanalphah2=1.405*20/15\n",
"printf('\n\n tanαh2= %0.3f',tanalphah2)\n",
"alpha_h2=((atan(tanalphah2)))*180/%pi\n",
"printf('\n Thus αh1= %0.1f degrees',alpha_h2)\n",
"\n",
"tanalphat2=1.405*20/24\n",
"printf('\n\n tanαt2= %0.3f',tanalphat2)\n",
"alpha_t2=((atan(tanalphat2)))*180/%pi\n",
"printf('\n Thus αh1= %0.1f degrees',alpha_t2)\n",
"\n",
"disp('The degree of reaction at the hub and tip can be determined.')\n",
"Rh=1-((1-0.5)/((15/20)^2))\n",
"Rt=1-((1-0.5)/((24/20)^2))\n",
"printf('\n Rh= %0.2f',Rh)\n",
"printf('\n Rt= %0.2f',Rt)\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
""
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 7.3: AFC.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clear all; clc;\n",
"\n",
"disp('From the previous numerical wee have ßm1=αm2=54.5 degrees, tanßm1=1.405')\n",
"disp('ßm2=αm1=42.6 degrees. Thus tanßm2=0.92')\n",
"\n",
"disp('tanßm1-tanßm2=1.55(1+1.5*(s/c)),thus we can determine s/c')\n",
"//let x= s/c\n",
"x=[1.55/(1.405-0.92)-1]/1.5\n",
"printf('Thus (s/c)= %0.2f',x)\n",
"\n",
"disp('Also b/c=3,we have c=(rt-rh)/3')\n",
"rt=24\n",
"rh=15\n",
"c=(rt-rh)/3\n",
"printf('\n c= %0.0f in',c)\n",
"\n",
"s=1.47*c\n",
"printf('\n Hence we determine s to be equal to %0.1f in',s)\n",
"\n",
"rm=20\n",
"Zb=2*%pi*rm/s\n",
"printf('\n Zb= %0.0f',Zb)\n",
"\n",
"disp('The blade angles can be estimated from ßb1=ßm1-i and ßb2=ßm2-δ')\n",
"disp('Where i=3 degrees and δ=m*Θ*((s/c)^0.5)')\n",
"\n",
"//let n=a/c\n",
"n=0.5\n",
"disp('m=0.23*((2*(a/c))^2)+0.1*(ßm2/50)')\n",
"disp('Θ=ßm1-ßm2')\n",
"thita=11.9\n",
"m=0.23+(0.1*42.6/50)//for circular blade\n",
"printf('\n m= %0.3f',m)\n",
"m=0.315\n",
"x=1.47\n",
"delta=m*thita*(x^0.5)\n",
"printf('\n δ= %0.1f degrees',delta)\n",
"\n",
"beta_b1=54.5-3\n",
"printf('\n ßb1= %0.1f degrees',beta_b1)\n",
"\n",
"beta_b2=42.6-4.5\n",
"printf('\n ßb2= %0.1f degrees',beta_b2)\n",
""
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 7.4: AFC.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clear all; clc;\n",
"\n",
"disp('We have psia=lamda*psi=lambda*phi*(tanßm1-tanßm2) and R=0.5*φ(tanß1+tanß2) we can obtain the values of tanß1 and tanß2')\n",
"//let x=tanßm1-tanßm2\n",
"x=0.35/(0.92*0.5)\n",
"printf('\n tanßm1-tanßm2= %0.3f',x)\n",
"\n",
"//let y=tanß1+tanß2\n",
"y=2*0.5/0.5\n",
"printf('\nThus tanß1+tanß2= %0.3f',y)\n",
"\n",
"disp('Hence tanß1=1.38')\n",
"tanbeta1=1.38\n",
"beta_1=((atan(tanbeta1)))*180/%pi\n",
"printf('\nThus the value of ß1 is equal to %0.1f degrees',beta_1)\n",
"\n",
"disp('tanß2=0.619')\n",
"tanbeta2=0.619\n",
"beta_2=((atan(tanbeta2)))*180/%pi\n",
"printf('\nThus the value of ß1 is equal to %0.1f degrees',beta_2)\n",
"\n",
"disp('For each stage we have psi=Cp*deltaTos/((Um)^2)')\n",
"delta_T_os=0.35*(920^2)/6012\n",
"printf('\nHence deltaTos= %0.1f R',delta_T_os)\n",
"\n",
"Cp=0.24*778*32.2\n",
"printf('\nWhere Cp = %0.0f ft-lbf/slug',Cp)\n",
"\n",
"disp('For overall compressor form equation 47.4 we have (Poe/poi)=[(1+deltaToe/Toi)]^(k*eff*p/(k-1))')\n",
"delta_T_oe=530*[(4.5^(0.2857/0.9))-1]\n",
"printf('\nThus deltaToe= %0.0f R',delta_T_oe)\n",
"\n",
"disp('The number of stages can be calculated as ns=deltaToe/deltaTos')\n",
"delta_T_oe=324\n",
"delta_T_os=49.3\n",
"ns=delta_T_oe/delta_T_os\n",
"printf('\nThus ns= %0.2f',ns)\n",
"disp('ns is approximately equal to 7')\n",
"\n",
"disp('Hence the actual values are: ')\n",
"delta_T_oe=7*49.3\n",
"printf('deltaToe= %0.1f R',delta_T_oe)\n",
"\n",
"//let f=poe/po1\n",
"f=(1+(345.1/530))^(0.9*3.5)\n",
"printf('\n poe/po1= %0.2f',f)\n",
"\n",
"disp('The adiabetic efficiency is given as ((poe/poi)^(((k-1)/k))-1/((Toe/Toi)-1)')\n",
"//let k-1/k=d\n",
"d=0.2857\n",
"f=4.85\n",
"\n",
"ETA_ad=((f^(d))-1)/((345.1/530))\n",
"printf('\nETAad= %0.4f',ETA_ad)\n",
"//let r=ETAd*100\n",
"r=ETA_ad*100\n",
"printf('\n Thus ETAad= %0.2f percent',r)\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
""
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 7.5: AFC.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clear all; clc;\n",
"\n",
"disp('Assume constant axial flow velocity Va=500 ft/s , no prewhirl and hence V1=Va for the first stage and frre vortex conditions for all stages.')\n",
"\n",
"disp('1. First Stage')\n",
"\n",
"T1=530-((500^2)/(2*6012))\n",
"printf('T1= %0.1f R',T1)\n",
"\n",
"p1=14.7*((509.2/530)^3.5)\n",
"printf('\n p1= %0.2f psia',p1)\n",
"\n",
"rho_1=(12.78*144)/(53.33*509.2)\n",
"printf('\n rho_1= %0.5f lm/ft^3',rho_1)\n",
"\n",
"disp('With a selected nu=rh/rt=0.45, A=m/(rho_1*Va)')\n",
"m=65\n",
"rho_1=0.0677\n",
"Va=500\n",
"A=m/(rho_1*Va)\n",
"printf('\n A= %0.2f ft^2 = 276.5in^2',A)\n",
"\n",
"disp('A=pi*(r_t^2)*(1-nu^2)')\n",
"A=276.5\n",
"nu=0.45\n",
"r_t=sqrt(A/(%pi*(1-(nu^2))))\n",
"printf('\n r_t= %0.1f in',r_t)\n",
"\n",
"disp('rm=7.6in')\n",
"\n",
"disp('Ut=rt*omega')\n",
"N=15000\n",
"omega=N*%pi/30\n",
"rt=10.5/12//in feet\n",
"Ut=rt*omega\n",
"printf('\n Ut %0.1f ft/s',Ut)\n",
"\n",
"rh=4.7/12//in feet\n",
"Uh=rh*omega\n",
"printf('\n Uh= %0.1f ft/s',Uh)\n",
"\n",
"rm=7.6/12//in feet\n",
"Um=rm*omega\n",
"printf('\n Um= %0.1f ft/s',Um)//answer given in the book is 996.6,however 994.8 is more accurate\n",
"\n",
"disp('Without inlet whirl flow,we have Wt=(Ut^2+Va^2)^0.5')\n",
"Ut=1374.4\n",
"Va=500\n",
"Wt=sqrt(Ut^2+Va^2)\n",
"printf('\n Thus Wt = %0.0ft/s',Wt)\n",
"\n",
"Uh=615.2\n",
"Va=500\n",
"Wh=sqrt(Uh^2+Va^2)\n",
"printf('\n Thus Wh = %0.1ft/s',Wh)\n",
"\n",
"Um=996.6//This is the answer substituted in the book,although as mentioned earlier 994.8 is more accurate.\n",
"Va=500\n",
"Wm=sqrt(Um^2+Va^2)\n",
"printf('\n Thus Wm = %0.1ft/s',Wm)\n",
"\n",
"tanbeta1m=Um/Va\n",
"printf('\n tanß1m= %0.2f',tanbeta1m)\n",
"\n",
"beta1m=((atan(tanbeta1m)))*180/%pi\n",
"printf('\n ß1m= %0.1f degrees',beta1m)\n",
"\n",
"disp('With a1=(k*R*T1)^0.5=1309ft/s,the relative Mach numbers can be determined.')\n",
"Wt=1463\n",
"a1=1309\n",
"M_rt=Wt/a1\n",
"printf('\n M_rt= %0.2f',M_rt)\n",
"\n",
"Wh=792.8\n",
"M_rh=Wh/a1\n",
"printf('\nM_rh= %0.3f',M_rh)\n",
"\n",
"Wm=1115.0\n",
"M_rm=Wm/a1\n",
"printf('\n M_rm= %0.2f',M_rm)\n",
"\n",
"disp('Hence the relative flow at the leading edge is transonic,and a supersonic blade might be needed.')\n",
"disp('From the previous sum,to achieve a pressure ratio of 4.5,we have deltaTos=324/7=46.3R.')\n",
"disp('So deltaTos=45R is selected at the first stage.')\n",
"disp('From Cp*deltaTos=lambda*Um*Va*(tanß1m-tanß2m),with lambda=0.95,we obtain tanß2m=1.42. Thus ß2m=54.8 degrees')\n",
"\n",
"tanbeta1=1.99\n",
"tanbeta2=1.42\n",
"Va=500\n",
"Um=996.6\n",
"R=(Va/(2*Um))*(tanbeta1+tanbeta2)\n",
"printf('\n R=(Va/(2*Um))*(tanbeta1+tanbeta2)= %0.3f',R)\n",
"\n",
"disp('We have nu=(1-R)^0.5')\n",
"nu=sqrt(1-R)\n",
"printf('\n nu= %0.2f',nu)\n",
"\n",
"disp('This is less than the selected value and is acceptable.')\n",
"beta1=63.3\n",
"beta2=54.8\n",
"deHaller=cos(beta1*%pi/180)/cos(beta2*%pi/180)\n",
"printf('\n Also checking the deHaller number W2/W1=cosß1/cosß2=%0.2f >0.70,it is also acceptable',deHaller)\n",
"\n",
"disp('Before proceeding to the next stages,the following parameters have to be specified. The summation of deltaTos should add upto 324degrees.So the following arramgement is chosen')\n",
"Stage_number=[1 2 3 4 5 6 7 ];\n",
"deltaTos_R=[45 46 47 47 47 47 45];\n",
"lambda=[0.95 0.93 0.90 0.89 0.88 0.86 0.85];\n",
"R=[0.855 0.8 0.7 0.63 0.60 0.55 0.5];\n",
"table=[Stage_number' deltaTos_R' lambda' R']\n",
"disp('The table from left to right has values of Stagenumber deltaTos lamdbda and R')\n",
"disp(table)\n",
"\n",
"disp('2.Second Stage')\n",
"\n",
"To1=530+45\n",
"printf('To1= %0.0f R',To1)\n",
"\n",
"po1=14.7*((1+(0.9*45/530))^3.5)\n",
"printf('\n po1= %0.0f psia',po1)\n",
"\n",
"disp('With the specified values of deltaTos,lamda and R,equations 7.1 and 7.2A can be solved for tanß1 and tanß2.')\n",
"disp('Hence ß1=62.1 degrees and ß2=52.4 degrees,where W2/W1=0.76>0.70')\n",
"beta1=62.1*%pi/180//converting to radians \n",
"V1=[(Va^2)+(Um-(Va*tan(beta1)))^2]^0.5\n",
"printf('Also we have V1=[(Va^2)+(Um-(Va*tan(beta1)))^2]^0.5= %0.2f ft/s',V1)//answer in the book is 502.6,however the value found out here is more accurate\n",
"\n",
"Cp=6012\n",
"V1=502.6\n",
"T1=To1-((V1^2)/(2*Cp))\n",
"printf('\nT1= %0.0f R',T1)\n",
"\n",
"po1=19\n",
"T1=554\n",
"To1=575\n",
"p1=po1*((T1/To1)^3.5)\n",
"printf('\np1= %0.1f psia',p1)\n",
"\n",
"disp('rho1= p1/(R*T1)= 0.0813 lb_m/ft^3')\n",
"\n",
"\n",
"\n",
"disp('A=m/(rho1*Va)=230')\n",
"disp('A is also = 2*pi*r_m*b')\n",
"disp('Where b=rt-rh and rm is the same as that for the first stage. Hence we have rt=10 in,rh=5.2 in and nu=0.52,which is greater than nu_min(0.447) ')\n",
"\n",
"disp('3.Third to Seventh stage')\n",
"disp('The calculation procedure for these stages will be similar to the second stage. The calculations have not been repeated in the book,and hence the same is done here.')\n",
"disp('The results are as follows')\n",
"\n",
"Stagenumber=[1 2 3 4 5 6 7];\n",
"To1=[530 575 621 668 715 762 809];\n",
"po1=[14.7 19 24.3 30.5 37.9 46.3 55.9];\n",
"rt=[10.5 10 9.6 9.3 9.1 8.9 8.8];\n",
"rh=[4.7 5.2 5.6 5.9 6.1 6.3 6.5];\n",
"rm=[7.6 7.6 7.6 7.6 7.6 7.6 7.6 ];\n",
"beta1=[63.3 62.1 59.7 57.5 56.5 54.7 52.4];\n",
"beta2=[54.9 52.3 47.2 43.2 41.4 38 34.8]\n",
"table2=[Stagenumber' To1' po1' rt' rh' rm' beta1' beta2']\n",
"disp('Stageno. To1 po1 rt rh rm beta1 beta2')\n",
"disp(table2)\n",
"\n",
"disp('The final discharge stagnation pressure can also be checked with the flow across the last stage such that poe=po3=po1(1+ETAs*(deltaTos/To1))^(k/(k-1))')\n",
"po1=55.9*(1+(0.9*45/809))^3.5\n",
"printf('po1= %0.1f psia',po1)\n",
"//let n=poe/poi\n",
"n=66.3/14.7\n",
"printf('\n This checks with poe/poi = %0.2f',n)\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
""
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 7.6: AFC.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clear all; clc;\n",
"\n",
"disp('We have psi=lambda*[1-φ*(tanα1+tanß2)] and R=0.5+[(φ/2)*(tanß2-tanα1)]')\n",
"disp('We have tanα1+tanß2=(1-psi/lamda)=1.01')\n",
"disp('tanα1-tanß2=(1-2R)/φ=-0.545,or psi=lambda*(1-1.01*φ) and R=0.5+0.272*φ Hence φdash=0.495,assuming lamda to be constant we can determine the values of psi_dash and R_dash')\n",
"\n",
"lambda=0.9\n",
"//Let (tanalpha1+tanbeta2)=x\n",
"x=1.01\n",
"phi_dash=0.495\n",
"psi_dash=lambda*[1-(phi_dash*(x))]\n",
"printf('\n psi_dash= %0.2f',psi_dash)\n",
"\n",
"//Let= 0.5*(tanbeta2-tanalpha1=y\n",
"y=0.272\n",
"R_dash=0.5+[(phi_dash*0.272)]\n",
"printf('\n R_dash= %0.3f',R_dash)\n",
""
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Scilab",
"language": "scilab",
"name": "scilab"
},
"language_info": {
"file_extension": ".sce",
"help_links": [
{
"text": "MetaKernel Magics",
"url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
}
],
"mimetype": "text/x-octave",
"name": "scilab",
"version": "0.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|