1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 3: Energy Transfer in Turbomachines"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 3.10: ETT.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clear all; clc;\n",
"//This numerical is Ex 3_5S,page 53.\n",
"\n",
"//this numerical is based on numerical 3_4S\n",
"//values found in the book for numerical 3_4S will be used to solve this numerical(3.5S)\n",
"\n",
"delta_Et=40.85\n",
"U_1=6.9\n",
"U_2=2.92\n",
"V_m2=0.782\n",
"V_2=0.782//since V2=Vm2\n",
"\n",
"V_r1=0.508\n",
"W_u1=0.997\n",
"W_1=(V_r1^2+W_u1^2)^0.5\n",
"printf('\n W1 is equal to %0.2f ft/s',W_1)\n",
"\n",
"W_2=(U_2^2+V_m2^2)^0.5\n",
"printf('\n W_2 is equal to %0.2f ft/s',W_2)\n",
"\n",
"Rt=0.5*[(U_1^2-U_2^2)+(W_2^2-W_1^2)]/(delta_Et)\n",
"printf('\n Thus the value Rt is equal to %0.3f',Rt)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 3.11: ETT.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clear all; clc;\n",
"//This numerical is Ex 3_6E,page 53.\n",
"disp('The velocity diagram is similar to that in figure 3.19')\n",
"\n",
"r_t=1.2\n",
"r_h=0.7\n",
"N=4800\n",
"V_1=600\n",
"\n",
"r_m=[0.5*(r_t^2+r_h^2)]^0.5\n",
"printf('\n r_m is equal to %0.3f ft',r_m)\n",
"\n",
"A=%pi*(r_t^2-r_h^2)\n",
"printf('\n A is equal to %0.2f ft^2',A)\n",
"\n",
"r_m=0.982//rounding off rm\n",
"U=(N*%pi*r_m)/30\n",
"printf('\n U is equal to %0.1f ft/s',U)\n",
"\n",
"V_a1=V_1*cos(60*%pi/180)//angle is given as 60 degrees\n",
"printf('\n V_a1 is equal to %0.2f ft/s',V_a1)\n",
"\n",
"V_u1=V_1*sin(60*%pi/180)//angle is given as 60 degrees\n",
"printf('\n V_u1 is equal to %0.1f ft/s',V_u1)\n",
"\n",
"//let tan(betaf1)=(Vu1-U)/Va1=x\n",
"x=(V_u1-U)/V_a1\n",
"printf('\n tan(ßf1) is equal to %0.4f',x)\n",
"beta_f1=(atan(x))*180/%pi\n",
"printf('\n Hence ßf1= %0.2f degrees',beta_f1)\n",
"\n",
"disp('ßf1=ßb1. Also ßb2=ßf2=alpha_1=60 degrees')\n",
"disp('From the velocity diagram we have V_u2=W_u1=V_u1-U')\n",
"W_u1=V_u1-U\n",
"printf('\n Thus Wu1 = %g ft/s',W_u1)\n",
"\n",
"//let l=Ps/m=U*(Vu1+Vu2)\n",
"V_u2=W_u1//already stated above\n",
"l=U*(V_u1+V_u2)\n",
"printf('\n P_s/m=U*(V_u1+V_u2) is equal to %g (ft/s)^2',l)\n",
"disp('Thus we can round it off to 29*10^5 (ft/s)^2')\n",
"\n",
"disp('Where m=rho*V_a1*A')\n",
"rho=0.085/32.2\n",
"m=rho*V_a1*A\n",
"printf('\n m= %0.2f slug/s',m)\n",
"\n",
"disp('Thus we can determine P_s')\n",
"l=2.69*10^5//rounded off value\n",
"m=2.36//rounded off value\n",
"P_s=(l*m)/550\n",
"printf(' P_s =%0.0f hp',P_s)\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
""
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 3.12: ETT.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clear all; clc;\n",
"//This numerical is Ex 3_6S,page 54.\n",
"\n",
"disp('The velocity diagram is similar to that in figure 3.19')\n",
"\n",
"r_t=0.36\n",
"r_h=0.21\n",
"N=4800\n",
"V_1=183\n",
"\n",
"r_m=[0.5*(r_t^2+r_h^2)]^0.5\n",
"printf('\n rm is equal to %0.3f m',r_m)\n",
"\n",
"A=%pi*(r_t^2-r_h^2)\n",
"printf('\n A is equal to %0.2f m^2',A)\n",
"\n",
"r_m=0.295//rounding off rm\n",
"U=(N*%pi*r_m)/30\n",
"printf('\n U is equal to %0.1f m/s',U)\n",
"\n",
"V_a1=V_1*cos(60*%pi/180)//angle is given as 60 degrees\n",
"printf('\n V_a1 is equal to %0.2f m/s',V_a1)\n",
"\n",
"V_u1=V_1*sin(60*%pi/180)//angle is given as 60 degrees\n",
"printf('\n V_u1 is equal to %0.1f m/s',V_u1)\n",
"\n",
"//let tan(betaf1)=(Vu1-U)/Va1=x\n",
"x=(V_u1-U)/V_a1\n",
"printf('\n tan(ß1) is equal to %g m/s^2',x)\n",
"\n",
"beta_f1=(atan(x))*180/%pi\n",
"printf('\n We have ß_b1= ß_f1= %0.2f degrees',beta_f1)//value in book is 6.35 degrees Difference is obtained because actual value of x is substituted. Value substituted in the book is not 0.111 or 0.11147.\n",
"\n",
"disp('ß_f1=ß_b1. Also ß_b2=ß_f2=alpha_1=60 degrees')\n",
"disp('From the velocity diagram we have V_u2=W_u1=V_u1-U')\n",
"W_u1=V_u1-U\n",
"printf('\n Thus W_u1 = %0.2f m/s',W_u1)\n",
"\n",
"//let l=Ps/m=U*(Vu1+Vu2)\n",
"V_u2=W_u1//already stated above\n",
"l=U*(V_u1+V_u2)\n",
"printf('\n P_s/m=U*(V_u1+V_u2) is equal to %g (m/s)^2',l)\n",
"disp('Thus we can round it off to 2.5*10^4 (m/s)^2')\n",
"\n",
"disp('Where m=rho*V_a1*A')\n",
"rho=1.36\n",
"V_a1=91.5//rounded off\n",
"A=0.269//rounded off\n",
"m=rho*V_a1*A\n",
"printf('\n m= %0.1f kg/s',m)\n",
"\n",
"disp('Thus we can determine P_s')\n",
"l=2.5*10^4//rounded off value\n",
"m=33.5//rounded off value\n",
"P_s=(l*m)\n",
"printf(' P_s =%0.0f W',P_s)\n",
"disp('Thus on rounding off P_s is equal to 837kW')\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
""
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 3.13: ETT.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clear all; clc;\n",
"//This numerical is Ex 3_7E,page 54.\n",
"\n",
"//Velocity diagrams are not drawn. This is with Scilab team's permission.\n",
"//The numerical part of the question has been solved.\n",
"\n",
"r_t=5.2\n",
"r_h=3.5\n",
"N=4500\n",
"\n",
"A=%pi*(r_t^2-r_h^2)\n",
"printf(' A is equal to %0.2f in^2',A)\n",
"disp('On converting to feet we get A= 0.322 ft^2')\n",
"\n",
"r_m=[0.5*(r_t^2+r_h^2)]^0.5\n",
"printf('\n rm is equal to %0.2f in',r_m)\n",
"disp(' On converting to feet we get rm =0.369ft')\n",
"\n",
"r_m=0.369//in feet\n",
"U_m=(N*%pi*r_m)/30\n",
"printf('\n U_m is equal to %0.0f ft/s',U_m)\n",
"\n",
"disp('From inlet velocity triangle we have V_1/sin(ß_1+pi/2)+U_m/sin(aplha_1-ß_1)')\n",
"disp('Hence V_1=174*(sin(120)/sin(25))')\n",
"\n",
"V_1=174*(sin(120*%pi/180)/sin(25*%pi/180))\n",
"printf(' V_1 = %0.2f ft/s',V_1)\n",
"\n",
"alpha_1=(55*%pi)/180//radians\n",
"V_1=356.5//rounded off\n",
"V_a=V_1*cos(alpha_1)\n",
"printf('\n Thus V_a= %0.1f ft/s',V_a)\n",
"\n",
"rho=0.095\n",
"V_a=204.5//rounded off\n",
"A=0.322//rounded off\n",
"m=rho*V_a*A\n",
"printf('\n m= %0.3f lb/s',m)\n",
"\n",
"disp('From delta_E=U_m*V_u1 we have P_s=m*delta_E')\n",
"m=6.25/32.2//in lbf\n",
"U_m=174//rounded off\n",
"V_u1=356.5*sin((55*%pi)/180)\n",
"delta_E=U_m*V_u1\n",
"P_s=m*delta_E\n",
"printf(' P_s is equal to %0.1f ft-lbf/s',P_s)\n",
"disp('On converting we get P_s = 17.9hp')\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
""
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 3.1: ETT.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clear all; clc;\n",
"//This numerical is Ex 3_1E,page 43.\n",
"N=800\n",
"Q=1750//in gallon per minute\n",
"r_1=3\n",
"b_1=4\n",
"r_2=9\n",
"b_2=3\n",
"\n",
"omega=N*%pi/30\n",
"printf('\n The angular velocity is %g rad/s',omega)\n",
"omega_r=83.7\n",
"disp('After rounding off the value of angular velocity is 83.7 rad/s')\n",
"\n",
"\n",
"U_1=omega_r*r_1/12\n",
"printf(' U_1=%g',U_1)\n",
"disp('After rounding off the value of U_1 is 20.9 ft/s')\n",
"U_1r=20.9//rounded value of U1\n",
"\n",
"\n",
"U_2=omega_r*r_2/12\n",
"printf(' U_2=%g',U_2)\n",
"disp('After rounding off the value of U_2 is 62.7 ft/s')\n",
"\n",
"\n",
"A_1=2*%pi*r_1*b_1/144\n",
"printf(' A_1=%g ft^2',A_1)\n",
"disp('After rounding off the value of A_1 is 0.523 ft^2')\n",
"\n",
"A_2=2*%pi*r_2*b_2/144\n",
"printf(' A_2=%g ft^2',A_2)\n",
"disp('After rounding off the value of A_2 is 1.18 ft^2')\n",
"A_1r=0.523//rounded off\n",
"A_2r=1.18//rounded off\n",
"\n",
"\n",
"V_r1=(Q*0.00223)/(A_1r)\n",
"printf(' The value of V_r1 is %g',V_r1)\n",
"disp('The value of V_r1 after rounding off is 7.47 ft/s')\n",
"\n",
"V_r2=(Q*0.00223)/(A_2r)\n",
"printf(' The value of V_r2 is %g',V_r2)\n",
"disp('The value of V_r2 after rounding off is 3.27 ft/s')//actual value is 3.30,however the value given in the book is 3.27 ft/s\n",
"\n",
""
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 3.2: ETT.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clear all; clc;\n",
"//This numerical is Ex 3_1S,page 43.\n",
"N=800\n",
"Q=397//in meter cube per hour\n",
"r_1=7.6\n",
"b_1=10.2\n",
"r_2=22.9\n",
"b_2=7.6\n",
"omega=N*%pi/30\n",
"printf('The angular velocity is %g rad/s',omega)\n",
"omegar=83.7\n",
"disp('After rounding off the value of angular velocity is 83.7 rad/s')\n",
"U_1=omega*r_1/100\n",
"printf(' U_1=%g',U_1)\n",
"disp('After rounding off the value of U_1 is 6.36 m/s')\n",
"U_1r=6.36//rounded value of U1\n",
"U_2=omega*r_2/100\n",
"printf(' U_2=%g',U_2)\n",
"disp('After rounding off the value of U_2 is 19.2 m/s')\n",
"A_1=2*%pi*r_1*b_1\n",
"printf(' A_1=%g cm^2',A_1)\n",
"disp('After rounding off the value of A_1 is 487 cm^2')\n",
"A_2=2*%pi*r_2*b_2\n",
"printf(' A_2=%g cm^2',A_2)\n",
"disp('After rounding off the value of A_2 is 1093.5 cm^2')\n",
"A_1r=487//rounded off\n",
"A_2r=1093.5//rounded off\n",
"V_r1=(Q/3600)/(A_1r/10000)\n",
"printf(' The value of V_r1 is %g',V_r1)\n",
"disp('The value of V_r1 after rounding off is 2.26 m/s')\n",
"V_r2=(Q/3600)/(A_2r/10000)\n",
"printf(' The value of V_r2 is %g',V_r2)\n",
"disp('The value of V_r2 after rounding off is 1.01 m/s')\n",
"\n",
""
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 3.3: ETT.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clear all; clc;\n",
"//This numerical is Ex 3_2E,page 44.\n",
"\n",
"V_r1=7.47\n",
"U_1=20.9\n",
"V_r2=3.27\n",
"U_2=62.7\n",
"\n",
"//let x=tanbeta1\n",
"x=V_r1/U_1\n",
"printf('\n The value of ß_f1 is equal to %0.3f degrees',x)\n",
"beta_f1=(atan(x))*180/%pi\n",
"printf('\n Thus the value of ß_f1 is %0.2f degrees',beta_f1)\n",
"\n",
"V_1=V_r1\n",
"W_1=(U_1^2+V_r1^2)^0.5\n",
"printf('\n Thus the value of W_1 is %0.2f ft/s',W_1)\n",
"\n",
"beta_f2=beta_f1-10\n",
"printf('\n Hence the value of beta_f2 is equal to %0.2f degrees',beta_f2)\n",
"\n",
"//rounding of value of betaf2 to be equal to 9.6\n",
"beta_f2=9.6\n",
"W_u2=V_r2/tan(beta_f2*%pi/180)\n",
"printf('\n Hence the value of W_u2 is %0.1f ft/s',W_u2)\n",
"\n",
"V_u2=U_2-W_u2\n",
"printf('\n Hence the value of V_u2 is equal to %0.1f ft/s',V_u2)\n",
"\n",
"\n",
"//rounding off Wu2\n",
"W_u2=19.3\n",
"W_2=(W_u2^2+V_r2^2)^0.5\n",
"printf('\n The value of W_u2 is equal to %0.3f ft/s',W_2)\n",
"\n",
"//rounding off Vu2\n",
"V_u2=43.4\n",
"V_2=(V_u2^2+V_r2^2)^0.5\n",
"printf('\n Thus he value of V_2 is equal to %0.2f ft/s',V_2)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 3.4: ETT.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clear all; clc;\n",
"//This numerical is Ex 3_2S,page 44.\n",
"\n",
"V_r1=2.26\n",
"U_1=6.36\n",
"V_r2=1.01\n",
"U_2=19.2\n",
"\n",
"//let x=tan(beta_1)\n",
"x=V_r1/U_1\n",
"printf('\n The value of ß_f1 is equal to %0.3f degrees',x)\n",
"beta_f1=(atan(x))*180/%pi\n",
"printf('\n Thus the value of ß_f1 is %0.1f degrees',beta_f1)\n",
"\n",
"V_1=V_r1\n",
"W_1=(U_1^2+V_r1^2)^0.5\n",
"printf('\n Thus the value of W_1 is %0.2f m/s',W_1)\n",
"\n",
"beta_f2=beta_f1-10\n",
"printf('\n Hence the value of ß_f2 is equal to %0.1f degrees',beta_f2)\n",
"\n",
"//rounding of value of betaf2 to be equal to 9.6\n",
"beta_f2=9.6\n",
"W_u2=V_r2/tan(beta_f2*%pi/180)\n",
"printf('\n Hence the value of W_u2 is %0.2f m/s',W_u2)\n",
"\n",
"V_u2=U_2-W_u2\n",
"printf('\n Hence the value of V_u2 is equal to %0.2f m/s',V_u2)\n",
"\n",
"\n",
"//rounding off W_u2\n",
"W_u2=5.97\n",
"W_2=(W_u2^2+V_r2^2)^0.5\n",
"printf('\n The value of W_2 is equal to %0.3f m/s',W_2)\n",
"\n",
"//rounding off V_u2\n",
"V_u2=13.23\n",
"V_2=(V_u2^2+V_r2^2)^0.5\n",
"printf('\n Thus he value of V_2 is equal to %0.2f m/s',V_2)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 3.5: ETT.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clear all; clc;\n",
"//This numerical is Ex 3_3E,page 46.\n",
"//the value given in the book for Um is 200.5,but on calculating the value comes out to be 200.3\n",
"\n",
"r_t=24\n",
"r_h=10\n",
"N=1250\n",
"Q=53000\n",
"\n",
"r_m=(0.5*(r_t^2+r_h^2))^0.5\n",
"printf('\n The mean radius rm is equal to %0.1f in',r_m)\n",
"disp('Converting to feet we have r_m equal to 1.53 ft')\n",
"\n",
"\n",
"//rm in feet equals 1.53\n",
"r_m=1.53\n",
"U_m=((N*%pi)/30)*r_m\n",
"printf(' Um = %0.1f ft/s',U_m)//the value given in the book for Um is 200.5,but on calculating the value comes out to be 200.3\n",
"\n",
"A=(%pi*(r_t^2-r_h^2))/144\n",
"printf('\n The value of A is %0.1f ft^2',A)\n",
"\n",
"//rounding off A to be 10.4\n",
"A=10.4\n",
"V_a2=Q/(A*60)\n",
"V_a1=V_a2\n",
"printf('\n V_a1=V_a2 %0.1f ft/s',V_a2)\n",
"\n",
"beta_f1=(atan(U_m/V_a1))*180/%pi\n",
"beta_b1=beta_f1\n",
"printf('\n beta_b1=beta_f1 %0.1f degrees',beta_b1)\n",
"\n",
"\n",
"rho_w=62.4\n",
"rho_a=0.0762\n",
"g=32.2\n",
"H_w=2/12\n",
"disp('We know that g*Ha=(rho_w/rho_a)*g*H_w=U_mV_u2=Um*(U_m-V_a2*tan(beta_f2))')\n",
"disp('Hence we can find out the value of tan(ß_f2).Thus we can determine value of ß_f2.')\n",
"//Let n=U_m*(U_m-V_a2*tan(beta_f2)) and m=(rho_w/rho_a)*g*H_w\n",
"m=(rho_w/rho_a)*g*H_w\n",
"//therefore tan_betaf2=(U_m-m/U_m)/V_a2\n",
"tanbeta_f2=(U_m-m/U_m)/V_a2\n",
"beta_f2=(atan(tanbeta_f2))*180/%pi\n",
"printf('\n Thus the value of ß_f2 is equal to %0.1f degrees',beta_f2)\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
""
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 3.6: ETT.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clear all; clc;\n",
"//This numerical is Ex 3_3S,page 46.\n",
"\n",
"r_t=0.6\n",
"r_h=0.25\n",
"N=1250\n",
"Q=1500\n",
"\n",
"r_m=(0.5*(r_t^2+r_h^2))^0.5\n",
"printf('\n The mean radius rm is equal to %0.2f in. ',r_m)\n",
"\n",
"U_m=((N*%pi)/30)*r_m\n",
"printf(' On converting,U_m = %0.1f m/s',U_m)\n",
"\n",
"A=(%pi*(r_t^2-r_h^2))\n",
"printf('\n The value of A is %0.4f m^2',A)\n",
"\n",
"\n",
"V_a2=Q/(A*60)\n",
"V_a1=V_a2\n",
"printf('\n V_a1=V_a2 %0.1f m/s',V_a2)\n",
"\n",
"beta_f1=(atan(U_m/V_a1))*180/%pi\n",
"beta_b1=beta_f1\n",
"printf('\n beta_b1=beta_f1 %0.1f degrees',beta_b1)\n",
"\n",
"\n",
"rho_w=998\n",
"rho_a=1.22\n",
"g=9.8\n",
"H_w=5/100\n",
"U_m=60.2//rounding off Um\n",
"disp('We know that g*H_a=(rho_w/rho_a)*g*H_w=U_mV_u2=U_m*(U_m-V_a2*tan(beta_f2))')\n",
"disp('Hence we can find out the value of tanbet_f2')\n",
"//Let n=U_m*(U_m-V_a2*tan(beta_f2)) and m=(rho_w/rho_a)*g*H_w\n",
"m=(rho_w/rho_a)*g*H_w\n",
"//therefore tanbeta_f2=(U_m-m/U_m)/V_a2\n",
"tanbeta_f2=(U_m-m/U_m)/V_a2\n",
"beta_f2=(atan(tanbeta_f2))*180/%pi\n",
"printf('\n Thus the value of beta_f2 is equal to %0.1f degrees',beta_f2)\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
""
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 3.7: ETT.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clear all; clc;\n",
"//This numerical is Ex 3_4E,page 49.\n",
"\n",
"//the value of deltaE2 slightly differs from the value given in the book. However the calculated value is correct for te given substitutions\n",
"\n",
"N=120\n",
"r_1=1.8\n",
"b_1=0.3\n",
"\n",
"omega=(N*%pi)/30\n",
"printf('\n Omega is equal to %0.3f rad/s',omega)\n",
"\n",
"U_1=r_1*omega\n",
"printf('\n U_1 is equal to %0.1f ft/s',U_1)\n",
"\n",
"r_m2=(0.5*(1^2+0.4^2))^0.5\n",
"//rounding off the value of rm2\n",
"r_m2=0.761\n",
"\n",
"U_2=r_m2*omega\n",
"printf('\n U_2 is equal to %0.2f ft/s',U_2)\n",
"\n",
"A_1=2*%pi*r_1*b_1\n",
"printf('\n A_1 is equal to %0.2f ft^2',A_1)\n",
"\n",
"r_t2=1.0\n",
"r_h2=0.4\n",
"b_2=0.5\n",
"A_2=%pi*(r_t2+r_h2)*b_2\n",
"printf('\n A_2 is equal to %0.2f ft^2',A_2)\n",
"\n",
"disp('Assume swirl free flow at discharge that is V_u2=0 and ß_f1=ß_b1, ß_f2=ß_b2.')\n",
"\n",
"V_m2=U_2*tan(15*(%pi/180))\n",
"printf('\n So V_m2=U_2tan15 is equal to %0.2f ft/s',V_m2)\n",
"disp('Thus now we can determine Q')\n",
"\n",
"V_m2=2.56//rounding off\n",
"Q=V_m2*A_2\n",
"disp('Q=V_m2*A_2=V_r1*A_1')\n",
"printf('\n Thus Q is equal to %0.2f ft^3/s',Q)\n",
"\n",
"disp('Since the value of Q,A_1 is known,we can determine the value of V_r1')\n",
"V_r1=Q/A_1\n",
"printf(' The value of V_r1 is equal to %0.2f ft/s',V_r1)\n",
"\n",
"beta_f1=27\n",
"W_u1=V_r1/tan((beta_f1*%pi)/180)\n",
"printf('\n W_u1 is equal to %0.2f ft/s',W_u1)\n",
"\n",
"V_u1=U_1-W_u1\n",
"printf('\n The value of V_u1 is %0.2f ft/s',V_u1)\n",
"\n",
"U_1=22.6//rounding off\n",
"V_u1=19.3//rounding off\n",
"delta_Et=U_1*V_u1\n",
"printf('\n delta_Et is equal to %0.1f ft^2/s^2',delta_Et)//the value given in the book is 437.1,but the actual value is as calculated for the given values of U1 and Vu1\n",
"\n",
"m=(62.4/32.2)*5.63\n",
"P_s=m*delta_Et\n",
"printf('\n Thus P_s is equal to %0.1f ft*lbf/s',P_s)//since value of deltaEt differs from the one given in the book,so does the value of Ps\n",
"disp('Converting P_s to hp we get 8.65hp')\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
""
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 3.8: ETT.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clear all; clc;\n",
"//This numerical is Ex 3_4S,page 50.\n",
"//the value of deltaE2 slightly differs from the value given in the book. However the calculated value is correct for te given substitutions\n",
"\n",
"N=120\n",
"r_1=54.8\n",
"b_1=9.1\n",
"\n",
"omega=(N*%pi)/30\n",
"printf('\n Omega is equal to %0.3f rad/s',omega)\n",
"\n",
"U_1=r_1*omega/100\n",
"printf('\n U_1 is equal to %0.1f m/s',U_1)\n",
"\n",
"r_m2=(0.5*(30.5^2+ 12.2^2))^0.5\n",
"\n",
"U_2=r_m2*omega/100\n",
"printf('\n U_2 is equal to %0.2f m/s',U_2)\n",
"\n",
"A_1=2*%pi*r_1*b_1/10000\n",
"printf('\n A1 is equal to %0.3f m^2',A_1)\n",
"\n",
"r_t2=30.5\n",
"r_h2=12.2\n",
"b_2=15.2\n",
"A_2=%pi*(r_t2+r_h2)*b_2/10000\n",
"printf('\n A_2 is equal to %0.3f m^2',A_2)\n",
"\n",
"disp('Assume swirl free flow at discharge that is V_u2=0 and ß_f1=ß_b1, ß_f2=ß_b2.')\n",
"\n",
"V_m2=U_2*tan(15*(%pi/180))\n",
"printf('\n So V_m2=U_2tan15 is equal to %0.3f m/s',V_m2)\n",
"disp('Thus now we can determine Q')\n",
"\n",
"Q=V_m2*A_2\n",
"disp('Q=V_m2*A_2=V_r1*A_1')\n",
"printf('\n Thus Q is equal to %0.3f m^3/s',Q)\n",
"\n",
"disp('Since the value of Q,A_1 is known,we can determine the value of V_r1')\n",
"Q=0.159\n",
"V_r1=Q/A_1\n",
"printf(' The value of V_r1 is equal to %0.4f m/s',V_r1)//actual values are taken,hence a 0.0005 difference in answer is observed\n",
"\n",
"beta_f1=27//ßf1\n",
"V_r1=0.508//rounding off Vr1\n",
"W_u1=V_r1/tan((beta_f1*%pi)/180)\n",
"printf('\n W_u1 is equal to %0.4f m/s',W_u1)\n",
"\n",
"W_u1=0.997//rounding off\n",
"U_1=6.9//rounding off\n",
"V_u1=U_1-W_u1\n",
"printf('\n The value of V_u1 is %0.2f m/s',V_u1)//0.02 difference obtained because of substituting the values as they ahve been found out\n",
"\n",
"\n",
"V_u1=5.92//as substituted in the book\n",
"delta_Et=U_1*V_u1\n",
"printf('\n deltaEt is equal to %0.2f m^2/s^2',delta_Et)//\n",
"\n",
"m=998*0.782*0.204\n",
"P_s=m*delta_Et\n",
"printf('\n Thus P_s is equal to %0.0f W',P_s)\n",
"disp('Converting P_s to kW we get 6.503kW')\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
""
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 3.9: ETT.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clear all; clc;\n",
"//This numerical is Ex 3_5E,page 52.\n",
"\n",
"//this numerical is based on numerical 3.4E\n",
"//values found in the book for numerical 3.4E will be used to solve this numerical(3.5E)\n",
"\n",
"delta_Et=437.1\n",
"U_1=22.6\n",
"U_2=9.56\n",
"V_m2=2.56\n",
"V_2=2.56\n",
"\n",
"V_r1=1.66\n",
"W_u1=3.26\n",
"W_1=(V_r1^2+W_u1^2)^0.5\n",
"printf('\n W_1 is equal to %0.2f ft/s',W_1)\n",
"\n",
"W_2=(U_2^2+V_m2^2)^0.5\n",
"printf('\n W_2 is equal to %0.2f ft/s',W_2)\n",
"\n",
"V_u1=19.3\n",
"V_1=(V_r1^2+V_u1^2)^0.5\n",
"printf('\n V_1 is equal to %0.2f ft/s',V_1)\n",
"\n",
"Rt=0.5*[(U_1^2-U_2^2)+(W_2^2-W_1^2)]/(delta_Et)\n",
"printf('\n Thus the value Rt is equal to %0.3f',Rt)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Scilab",
"language": "scilab",
"name": "scilab"
},
"language_info": {
"file_extension": ".sce",
"help_links": [
{
"text": "MetaKernel Magics",
"url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
}
],
"mimetype": "text/x-octave",
"name": "scilab",
"version": "0.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|