summaryrefslogtreecommitdiff
path: root/Fundamentals_of_Turbomachinery_by_W_W_Peng/2-Dimensional_Analysis.ipynb
blob: 58b55b4588ac1b8a01ee98e744e0c1301c5b889b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
{
"cells": [
 {
		   "cell_type": "markdown",
	   "metadata": {},
	   "source": [
       "# Chapter 2: Dimensional Analysis"
	   ]
	},
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 2.10: DA.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"clear all; clc;\n",
"//This numerical is Ex 2_4E,page 31.\n",
"\n",
"disp('From phi equal to Qm/(Dm^3*Nm)=Qp/(Dp^3*Np) and psi=g*Hm/(Dm^2*Nm^2)=g*Hp/(Dp^2*Np^2), we have Qm=Qp*((Dm/Dp)^3)*(Nm/Np) and Hm=Hp*((Dm/Dp)^2)*(Nm/Np)^2)')\n",
"\n",
"Q_p=25\n",
"//let x=Dm/Dp=1/5\n",
"x=1/5\n",
"N_m=3600\n",
"N_p=1800\n",
"H_p=160\n",
"E=0.92\n",
"//let y=rho*g=62.4\n",
"y=62.4\n",
"\n",
"Q_m=Q_p*((x)^3)*(N_m/N_p)\n",
"printf('\n The value of Q_m is equal to %g ft^3/s',Q_m)\n",
"\n",
"H_m=H_p*((x^2)*(N_m/N_p)^2)\n",
"printf('\n The value of H_m is equal to %g ft',H_m)\n",
"\n",
"P_s=E*y*Q_m*H_m/550//1/550 is conversion factor\n",
"printf('\n The value of P_s is equal to %0.02f hp',P_s)\n",
""
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 2.11: DA.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"clear all; clc;\n",
"//This numerical is Ex 2_4S,page 31.\n",
"disp('From phi equal to Qm/(Dm^3*Nm)=Qp/(Dp^3*Np) and psi=g*Hm/(Dm^2*Nm^2)=g*Hp/(Dp^2*Np^2), we have Qm=Qp*((Dm/Dp)^3)*(Nm/Np) and Hm=Hp*((Dm/Dp)^2)*(Nm/Np)^2)')\n",
"\n",
"Q_p=42\n",
"//let x=Dm/Dp=1/5\n",
"x=1/5\n",
"N_m=3600\n",
"N_p=1800\n",
"H_p=50\n",
"E=0.92\n",
"rho=998\n",
"g=9.81\n",
"//let y=Q/60=0.011166\n",
"y=0.011166\n",
"\n",
"Q_m=Q_p*((x)^3)*(N_m/N_p)\n",
"printf('\n The value of Q_m is equal to %g cmm',Q_m)\n",
"\n",
"H_m=H_p*((x^2)*(N_m/N_p)^2)\n",
"printf('\n The value of H_m is equal to %g m',H_m)\n",
"\n",
"Q_mr=0.67//rounded off\n",
"P_s=E*rho*g*(y)*H_m\n",
"printf('\n The value of P_s is equal to %0.1f W',P_s)"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 2.1: DA.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"clear all; clc;\n",
"//This numerical is Ex 2_1,page 18.\n",
"\n",
"//These are examples given in the book,they are used to teach conversions from one unit to another\n",
"\n",
"rho=0.075//lbm/ft^3\n",
"\n",
"V=120\n",
"\n",
"RHO_c=rho/32.2//rho conerted to slug/ft^3\n",
"\n",
"disp('The initial value of rho was given in lb/ft^3. In order to convert it to slug/ft^3,we have used the conversion factor 1/32.2.')\n",
"\n",
"printf('\nThe initial value of rho was 0.075lb/ft^3 after coverting it is %0.5f slug/ft^3',RHO_c)\n",
"\n",
"p_d=RHO_c*V^2/2\n",
"\n",
"printf('\nHence the value of dynamic pressure is %0.2f (slug/ft^3)(ft/s)',p_d)\n",
"\n",
"p_dc=p_d/(12^2)//converting slug*s/ft^2 to lbf/in^2\n",
"\n",
"printf('\nThe final value of dynamic pressure is %0.3f lbf/in^2',p_dc)\n",
"\n",
"printf('\nHence we can say that the dynamic power is equal to  %0.3f psi.',p_dc)"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 2.2: DA.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"clear all; clc;\n",
"//This numerical is Ex 2_2,page 18.\n",
"\n",
"// This numerical is used an example to teach conversion factors\n",
"T0=600\n",
"T1=550\n",
"Cp=0.24\n",
"halfVsquare=Cp*32.2*778*(T0-T1)\n",
"printf('\n The value of half of V^2 is %g (Btu/slug*R)(lbf-ft/Btu)(R)',halfVsquare)\n",
"printf('\n The value of half of V^2 ca also be written as %g lbf-ft/slug',halfVsquare)\n",
"printf('\n The value of half of V^2 is also equal to %g (ft/s)^2',halfVsquare)\n",
"V=sqrt(halfVsquare*2)\n",
"printf('\n\n The value of V is equal to %0.1f ft/s',V)"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 2.3: DA.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"clear all; clc;\n",
"//This numerical is Ex 2_3,page 19.\n",
"\n",
"// This numerical is used an example to teach conversion factors\n",
"\n",
"rho=0.85*62.4\n",
"p=50//in psi\n",
"g=32.2\n",
"disp('Since pressure is the product of density,gravitaional accelaration and head, we can convert pressure in psi to head in ft using suitable conversion factors.')\n",
"H=p*144/( (rho/32.2)*32.2)\n",
"printf('The value of head H is given by %0.1f lb/ft^2/((slug/ft^3)*(ft/s^2))',H)\n",
"printf('\nThus the value of H is equal to %0.1f ft',H)"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 2.4: DA.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"clear all; clc;\n",
"//This numerical is Ex 2_4,page 19.\n",
"\n",
"//converting dynamic pressure of air from 2_1 to wg\n",
"\n",
"pd=16.77//lbf/ft^2\n",
"rho_w=62.4/32.2\n",
"g=32.2\n",
"disp('From pressure=density*gravitational accelaration *head, we can find out the value of head')\n",
"h=pd/(rho_w*g)\n",
"printf(' Hence the value of head H is %0.3f (lbf/ft^2)/(lbf/ft^3)',h)\n",
"printf('\n The value of head H can also be given by %0.3f ft',h)"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 2.5: DA.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"clear all; clc;\n",
"//This numerical is Ex 2_1E,page 29.\n",
"Q1=80\n",
"N1=1000\n",
"N2=1500\n",
"delta_p1=150\n",
"P_s1=8\n",
"\n",
"disp('From phi_2=phi_1 we have Q2/(D^3*N2)=Q1/(D^3*N1)')\n",
"Q2=Q1*N2/N1\n",
"printf(' The value of Q2 is equal to %g gpm \n',Q2)\n",
"\n",
"disp('From psi_1=psi_2 we have delta p 2/(rho*D^2*N2^2)=delta p 1/(rho*D^2*N1^2)')\n",
"delta_p2=delta_p1*((N2/N1)^2)\n",
"printf(' The value of delta_p2 is equal to %g psig \n',delta_p2)\n",
"\n",
"disp('From pi_2=pi_1 we have P_s2=P_s1*((N2/N1)^3)')\n",
"P_s2=P_s1*(N2/N1)^3\n",
"printf(' The value of P_s2 is equal to %g hp \n',P_s2)\n",
"\n",
"disp('The efficiencies are same at the corresponding points,so E1=E2')\n",
"E1=Q1*delta_p1*0.00223*144/(550*P_s1)\n",
"printf(' The value of E1=E2 is equal to %g \n',E1)\n",
"disp('Thus the efficiency is equal to 87.57%')"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 2.6: DA.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"clear all; clc;\n",
"//This numerical is Ex 2_1S,page 29.\n",
"Q1=18.2\n",
"N1=1000\n",
"N2=1500\n",
"delta_p1=10.3\n",
"P_s1=6\n",
"\n",
"Q2=Q1*N2/N1\n",
"printf('\n The value of Q2 is equal to %g m^3/h',Q2)\n",
"\n",
"delta_p2=delta_p1*((N2/N1)^2)\n",
"printf('\n The value of delta_p2 is equal to %0.1f bars',delta_p2)\n",
"\n",
"P_s2=P_s1*(N2/N1)^3\n",
"printf('\n The value of P_s2 is equal to %g kW',P_s2)\n",
"\n",
"E1=((Q1/3600)*delta_p1*10^2)/(P_s1)\n",
"printf('\n The value of E1=E2 is equal to %g ',E1)\n",
"disp('Thus the efficiency is equal to 86.8%')"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 2.7: DA.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"clear all; clc;\n",
"//This numerical is Ex 2_2E,page 30.\n",
"P_ho=30//hydraulic output power\n",
"Q=5//flow rate at best efficiency point\n",
"g=32.2\n",
"rho=1.938\n",
"Hp=320\n",
"N=600\n",
"\n",
"delta_pm=P_ho*550/Q\n",
"printf('Value of discharge head P_m %g lb/ft^2',delta_pm)\n",
"\n",
"Hm=delta_pm/(rho*g)\n",
"printf('\n Value of H_m=%0.2f ft',Hm)\n",
"disp('From the similarity law, H_p/H_m=((Np/Nm)^2)*((Dp/Dm)^2)')\n",
"\n",
"//let x=Hp/Hm\n",
"x=Hp/Hm\n",
"printf(' H_p/H_m =%0.2f',x)\n",
"disp('Thus (N_p/N_m)*(D_p/D_m) is equal to 2.46')\n",
"disp('Also the flow rate Q_p/Q_m=(N_p/N_m)*(D_p/D_m)^3')\n",
"z=350/5//value of Qp/Qm\n",
"printf(' Hence the value of Q_p/Q_m is equal to %g',z)\n",
"disp('Thus D_p/D_m=5.33 ,N_p/N_m=0.461')\n",
"//Let y=Np/Nm=0.461\n",
"y=0.461\n",
"N_m=N/y\n",
"printf(' Thus N_m = %g rpm',N_m)"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 2.8: DA.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"clear all; clc;\n",
"//This numerical is Ex 2_2S,page 30.\n",
"//The value given in the book for N_m is 1315,but on calculating the true value is found out to be 1304.35\n",
"\n",
"P_ho=22.4//hydraulic output power\n",
"Q=0.14//flow rate at best efficiency point\n",
"g=9.8\n",
"rho=998\n",
"H_p=97.5\n",
"N=600\n",
"\n",
"delta_pm=P_ho/Q\n",
"printf('Value of discharge head P_m %g  kPa',delta_pm)\n",
"\n",
"H_m=delta_pm*10^3/(rho*g)\n",
"printf('\n Value of H_m=%g m',H_m)\n",
"disp('From the similarity law, H_p/H_m=((N_p/N_m)^2)*((D_p/D_m)^2)')\n",
"\n",
"//let x=Hp/Hm\n",
"H_mr=16.3//rounded off value\n",
"x=H_p/H_mr\n",
"printf(' H_p/H_m =%0.2f',x)\n",
"disp('Thus (N_p/N_m)*(D_p/D_m) is equal to 2.45')\n",
"disp('Also the flow rate Q_p/Q_m=(N_p/N_m)*(D_p/D_m)^3')\n",
"z=9.9/0.14//value of Qp/Qm\n",
"printf(' Thus the value of Q_p/Q_m is %0.1f',z)\n",
"disp('Thus D_p/D_m=5.4 ,N_p/N_m=0.46')\n",
"//Let y=Np/Nm=0.461\n",
"y=0.46\n",
"N_m=N/y//where N=600 and y=0.46 \n",
"printf(' Hence N_m = %g rpm',N_m)//value given in the book is 1315,but on calculating the true value is found out to be 1304.35"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 2.9: DA.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"clear all; clc;\n",
"//This numerical is Ex 2_3E,page 31.\n",
"\n",
"N=1500\n",
"E=0.74\n",
"Q=250*0.00223//0.00223 is conversion factor\n",
"printf('Q is equal to %g',Q)\n",
"H=18\n",
"g=32.2\n",
"Q_o=250//before converting Q\n",
"\n",
"disp('From the dimensional specific speed (N_s) and fig2.1 , we select a Francis type pump and efficiency is estimated to be equal to 74%')\n",
"\n",
"N_s=N*(Q_o^0.5)/(H^0.75)\n",
"printf('\n N_s is equal to %0.0f rpm(gpm^0.5)/(ft^0.75)',N_s)\n",
"disp('To find the approximate size,Figure 2.2 has to be used')\n",
"\n",
"omega=N*%pi/30\n",
"printf('\n omega is equal to %0.0f',omega)\n",
"\n",
"omega_s=omega*(Q^0.5)/((g*H)^0.75)\n",
"printf('\n omega_s is equal to %0.4f',omega_s)\n",
"\n",
"disp('From figure 2.2, it is obtained that delta_s=3.1')\n",
"D=(3.1*(Q^0.5))/((g*H)^0.25)\n",
"printf('\n Hence D is equal to %0.3f ft',D)\n",
"disp('Hence D is equal to 5.7 in ')\n",
""
   ]
   }
],
"metadata": {
		  "kernelspec": {
		   "display_name": "Scilab",
		   "language": "scilab",
		   "name": "scilab"
		  },
		  "language_info": {
		   "file_extension": ".sce",
		   "help_links": [
			{
			 "text": "MetaKernel Magics",
			 "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
			}
		   ],
		   "mimetype": "text/x-octave",
		   "name": "scilab",
		   "version": "0.7.1"
		  }
		 },
		 "nbformat": 4,
		 "nbformat_minor": 0
}