1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 31: Induction and Inductance"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 31.1: Sample_Problem_1.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//Given that\n",
"i = 1.5 //in A\n",
"D = 3.2*10^-2 //in meter\n",
"N = 220/10^-2 //in turns/m\n",
"n = 130\n",
"d = 2.1*10^-2 //in meter\n",
"deltaT = 25*10^-3 //in s\n",
"uo = 4*%pi*10^-7 //in SI unit\n",
"\n",
"//Sample Problem 31-1\n",
"printf('**Sample Problem 31-1**\n')\n",
"A = %pi*(d/2)^2\n",
"deltaPhi = uo*N*i*A\n",
"E = n*deltaPhi/deltaT\n",
"printf('The emf induced is equal to %eV', E)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 31.2: Sample_Problem_2.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//Given that\n",
"r = 0.20 //in meter\n",
"t = poly(0, 't')\n",
"B = 4.0*t^2 + 2.0*t + 3.0\n",
"E = 2.0 //in Volts\n",
"R = 2 //in Ohm\n",
"\n",
"//Sample Problem 31-2a\n",
"printf('**Sample Problem 31-2a**\n')\n",
"t = 10 //in sec\n",
"flux = B*%pi*r^2/2\n",
"Et = derivat(flux)\n",
"E1 = horner(Et, t)\n",
"printf('The Emf induced is equal to %fV\n', E1)\n",
"\n",
"//Sample Problem 31-2b\n",
"printf('\n**Sample Problem 31-2b**\n')\n",
"I = (E1-E)/R\n",
"printf('The induced current is equal to %fA', I)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 31.3: Sample_Problem_3.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//Given that\n",
"t = poly(0, 't')\n",
"//B = 4*t^2*x^2\n",
"W = 3.0 //in meter\n",
"H = 2.0 //in meter\n",
"t1 = 0.10 //in sec\n",
"\n",
"//Sample Problem 31-3\n",
"printf('**Sample Problem 31-3**\n')\n",
"flux = integrate('4*x^2*H', 'x', 0, W)\n",
"E = derivat(flux*t^2)\n",
"E1 = horner(E, t1)\n",
"printf('The induced emf is equal to %fV', E1)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 31.4: Sample_Problem_4.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//Given that\n",
"R = 8.5*10^-2 //in meter\n",
"Rb = 0.13 //in T/s\n",
"r = 5.2*10^-2 //in meter\n",
"\n",
"//Sample Problem 31-4a\n",
"printf('**Sample Problem 31-4a**\n')\n",
"//Using Faraday's law\n",
"Rf = Rb*%pi*r^2\n",
"E = Rf/(2*%pi*r)\n",
"printf('The induced electric field is equal to %eV/m\n', E)\n",
"\n",
"//Sample Problem 31-4b\n",
"printf('\n**Sample Problem 31-4b**\n')\n",
"r = 12.5*10^-2 //in meter\n",
"Rf = Rb*%pi*R^2\n",
"E = Rf/(2*%pi*r)\n",
"printf('The induced electric field is equal to %eV/m', E)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 31.5: Sample_Problem_5.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//Given that\n",
"R = 9.0 //in Ohm\n",
"L = 2*10^-3 //in Henery\n",
"E = 18 //in Volts\n",
"\n",
"//Sample Problem 31-5a\n",
"printf('**Sample Problem 31-5a**\n')\n",
"//As soon as switch is closed the inductor will act like current barrier\n",
"Io = E/R\n",
"printf('The current as soon as qwitch is closed is equal to %1.2fA\n', Io)\n",
"\n",
"//Sample Problem 31-5b\n",
"printf('\n**Sample Problem 31-5b**\n')\n",
"//After long time inductor will act like short circuit\n",
"Req = R/3\n",
"If = E/(R/3)\n",
"printf('The current through the battery after long time will be %1.2fA', If)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 31.6: Sample_Problem_6.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//Given that\n",
"L = 53*10^-3 //in H\n",
"R = 0.37 //in Ohm\n",
"\n",
"//Sample Problem 31-6\n",
"printf('**Sample Problem 31-6**\n')\n",
"//i = io(1-e^(t/T))\n",
"//ln2 = t/T\n",
"T = L/R\n",
"t = T*log(2)\n",
"printf('The time taken to rach the current to half of its stedy state value is %fs', t)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 31.7: Sample_Problem_7.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//Given that\n",
"L = 53*10^-3 //in H\n",
"R = 0.35 //in Ohm\n",
"V = 12 //in Volts\n",
"\n",
"//Sample Problem 31-7a\n",
"printf('**Sample Problem 31-7a**\n')\n",
"i = V/R //in steady state\n",
"E = 1/2*L*i^2\n",
"printf('The Energy stored in the inductor in steady state is %fJ\n', E)\n",
"\n",
"//Sample Problem 31-7b\n",
"printf('\n**Sample Problem 31-7b**\n')\n",
"Et = E/2\n",
"//hence It = Io/sqrt(2)\n",
"f = log(1-1/sqrt(2)) //the number of times of time constant\n",
"printf('After t=%1.1fT, the energy stored in the inductor will be half of tis steady state value', f)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 31.8: Sample_Problem_8.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//Given that\n",
"a = 1.2*10^-3 //in meter\n",
"b = 3.5*10^-3 //in meter\n",
"i = 2.7 //in Amp\n",
"l = 1 //in meter(say)\n",
"uo = 4*%pi*10^-7\n",
"\n",
"//Sample Problem 31-8\n",
"printf('**Sample Problem 31-8**\n')\n",
"B = uo*i/(2*%pi) //divided by r\n",
"Ul = B^2/(2*uo) //divided by r^2\n",
"//Energy as a funtion of r\n",
"U = Ul*2*%pi*l //divided by r by r\n",
"Energy = integrate('U/r', 'r', a, b)\n",
"printf('Energy per unit length is equal to %1.2eJ/m', Energy)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 31.9: Sample_Problem_9.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//Given that\n",
"N1 = 1200 //turns\n",
"N2 = N1\n",
"R2 = 1.1*10^-2 //in meter\n",
"R1 = 15*10^-2 //in meter\n",
"uo = 4*%pi*10^-7\n",
"\n",
"//Sample Problem 31-9\n",
"printf('**Sample Problem 31-9**\n')\n",
"//let's assume\n",
"i = 1 //in amp\n",
"B1 = uo*N1*i/(2*R1)\n",
"phi2 = B1*%pi*R2^2*N2\n",
"M = phi2/i\n",
"printf('The mutual inductance of the two coil is equal to %1.2eH', M)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Scilab",
"language": "scilab",
"name": "scilab"
},
"language_info": {
"file_extension": ".sce",
"help_links": [
{
"text": "MetaKernel Magics",
"url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
}
],
"mimetype": "text/x-octave",
"name": "scilab",
"version": "0.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|