1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 3: Optical Sources "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 3.1: Determine_the_power_coupled_into_fiber.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//Chapter 3\n",
"//page no 67\n",
"//given\n",
"clc;\n",
"clear all;\n",
"Pin=1; //microW\n",
"W=15; //in degree\n",
"NA=sin(W*%pi/180);\n",
"NAA=0.26; //NA=0.2588190 which is rounded off\n",
"C_c=(NAA)^2;\n",
"printf('\n Coupling coefficient is %0.4f \n',C_c);\n",
"Pf=C_c*Pin;\n",
"printf('\n Power coupled into fiber %0.1f nW\n',Pf*1000);\n",
""
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 3.2: Power_Coupled_into_fiber.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//Chapter 3\n",
"//page no 67\n",
"//given\n",
"clc;\n",
"clear all;\n",
"n=0.02; //in percentage\n",
"W=20; //in degree\n",
"Vf=1.5; //in Volts\n",
"If=20; //in mAmps\n",
"Pin=If*Vf;\n",
"printf('\n Power coupled into fiber ,Pin = %0.0f mW\n',Pin);\n",
"Po=n*Pin;\n",
"printf('\n Output Power of the optical source is %0.1f mW\n',Po);\n",
"///from nc=20 degree\n",
"C_c=(sin(W*%pi/180))^2;\n",
"Pf=C_c*Po\n",
"printf('\n Optical power coupled into fibre is ,Pf = %0.0f microW\n',Pf*1000);\n",
""
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 3.3: Bandwidth_of_Led_Source.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//Chapter 3\n",
"//page no 68\n",
"//given\n",
"clc;\n",
"clear all;\n",
"tr=10; //in nsec\n",
"BW=0.35/tr/10^-9;\n",
"printf('\n Maximum operating bandwidth is %0.0f MHZ\n',BW/10^6); //divided by 10^6 to convert answer in MHZ"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 3.4: Coupling_efficiency_of_an_optical_source.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//Chapter 3\n",
"//page no 70\n",
"//given\n",
"clc;\n",
"clear all;\n",
"T=1; //Air\n",
"NA=0.3;\n",
"n0=1;\n",
"//x=y;\n",
"disp('for step index :A=infinite');\n",
"//for infinite alpha\n",
"//nc=T*(NA/n0)^2*(x/y)^2*(A/(A+2))\n",
"nc=T*(NA/n0)^2*(1)^2*1; // A/(A+2)=1 for A=infinite\n",
"printf('\n Coupling Coefficient,nc = %0.0f percent \n\n',nc*100);\n",
"\n",
"disp('for graded index :A=2');\n",
"A=2;\n",
"//n_c=(T*(NA/n0)^2*[A+[1-(y/x)^2]]/(A+2))\n",
"n_c=(T*(NA/n0)^2*[A+[1-(1)^2]]/(A+2)) //x/y=1\n",
"printf('\n Coupling Coefficient,nc = %0.1f percent \n',n_c*100);"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 3.5: Coupling_efficiency.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//Chapter 3\n",
"//page no 71\n",
"//given\n",
"clc;\n",
"clear all;\n",
"T=1; //Air\n",
"NA=0.3;\n",
"n0=1;\n",
"A=2;\n",
"//y=0.75x;\n",
"disp('for step index :');\n",
"//for infinite alpha\n",
"//nc=T*(NA/n0)^2*(x/y)^2*(A/(A+2))\n",
"nc=T*(NA/n0)^2*(1/0.75)^2*A/(A+2); // y/x=0.75\n",
"printf('\n Coupling Coefficient,nc = %0.0f percent \n\n',nc*100);\n",
"\n",
"disp('for graded index :A=2');\n",
"A=2;\n",
"//n_c=(T*(NA/n0)^2*[A+[1-(y/x)^2]]/(A+2))\n",
"n_c=(T*(NA/n0)^2*[A+[1-(0.75)^2]]/(A+2)) //y/x=0.75\n",
"printf('\n Coupling Coefficient,nc = %0.1f percent \n',n_c*100);"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 3.6: MTBF_of_LED_source.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//Chapter 3\n",
"//page no 72\n",
"//given\n",
"clc;\n",
"clear all;\n",
"//calculate Tf\n",
"If=85; //in mAmps\n",
"Vf=2.5; //in Volts\n",
"Ta=25; //in deg C\n",
"//calculate Tj\n",
"W=150; //in C/W for hermetric led\n",
"Pd=If*Vf;\n",
"Tj=Ta+W*Pd/1000;\n",
"printf('\n Value of Tj is %0.1f deg C\n',Tj);\n",
"TF=8.01*10^12 *%e^-(8111/(Tj+273));\n",
"printf('\n Value of TF is %0.0f deg C\n',TF);\n",
"//calculate RF\n",
"BF=6.5*10^-4; //from table\n",
"QF=0.5; //from table\n",
"EF=1; //from table\n",
"RF=BF*TF*EF*QF*1/10^6;\n",
"disp(RF,'Value of RF')\n",
"printf('\n Value of MTBF is %0.0f*10^6 hours \n',1/RF/10^6);//Answer in book is misprint in last line\n",
"\n",
""
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 3.7: Calculate_MTBF.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//Chapter 3\n",
"//page no 74\n",
"//given\n",
"clc;\n",
"clear all;\n",
"//calculate Tf\n",
"If=120; //in mAmps\n",
"Vf=1.8; //in Volts\n",
"Ta=80; //in deg C\n",
"//calculate Tj\n",
"W=150; //in C/W for hermetric led\n",
"Pd=0.5*If*Vf;\n",
"Tj=75+W*Pd/1000;\n",
"printf('\n Value of Tj is %0.1f degree cel \n',Tj);\n",
"TF=8.01*10^12 *%e^-(8111/(Tj+273));\n",
"printf('\n Value of TF is %0.0f \n',TF);\n",
"//calculate RF\n",
"BF=6.5*10^-4; //from table\n",
"QF=0.2; //from table\n",
"EF=0.75; //from table\n",
"RF=BF*TF*EF*QF*1/10^6;\n",
"printf('\n Value of RF is %0.3f*10^6 \n',RF*10^6);\n",
"printf('\n Value of MTBF is %0.0f*10^6 hours \n',1/RF/10^6);"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Scilab",
"language": "scilab",
"name": "scilab"
},
"language_info": {
"file_extension": ".sce",
"help_links": [
{
"text": "MetaKernel Magics",
"url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
}
],
"mimetype": "text/x-octave",
"name": "scilab",
"version": "0.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|