1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 5: Nuclear Physics"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.1: Mass_defect_of_He.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex5.1 :: Page-5.2 (2009)\n",
"clc;clear;\n",
"m_p = 1.007826; // Mass of a proton, amu\n",
"m_n = 1.008665; // Mass of a neutron, amu\n",
"M_He = 4.002604; // Measured mass of He nucleuc, amu\n",
"delta_m = 2*m_p+2*m_n - M_He; // Mass defect of He, amu\n",
"printf('\nThe mass defect of He = %f amu', delta_m);\n",
"\n",
"// Result\n",
"// The mass defect of He = 0.030378 amu "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.3: Maximum_energy_of_proton_in_a_cyclotron.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex5.3 :: Page-5.16 (2009)\n",
"clc;clear;\n",
"B = 0.70; // Magnetic field of cyclotron, weber/metre square\n",
"q = 1.6e-019; // Charge of the proton, C\n",
"R = 3; // Radius of Dee's, m\n",
"m = 1.67e-027; // Mass of the proton, kg\n",
"E_max = B^2*q^2*R^2/(2*m); // Maximum energy of the proton in the cyclotron, joule\n",
"printf('\nThe maximum energy of the proton in the cyclotron = %4.2e MeV', E_max/1.6e-013);\n",
"\n",
"// Result\n",
"// The maximum energy of the proton in the cyclotron = 2.11e+02 MeV \n",
"// The unit has been given wrong in the textbook. It should be MeV instead of eV"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.4: Energy_of_an_electron_in_a_betatron.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex5.4 :: Page-5.20 (2009)\n",
"clc;clear;\n",
"f = 1e+06; // Frequency of revolution of electron, Hz\n",
"rate_phi_B = 25; // Rate of change of magnetic flux, wb/s\n",
"E = f*rate_phi_B; // Energy of 'f' revolutios, eV\n",
"printf('\nThe energy of the electron in Betatron after %g revolutions = %3.1e eV', f, E);\n",
"\n",
"// Result\n",
"// The energy of the electron in Betatron after 1e+06 revolutions = 2.5e+07 eV "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.5: Final_energy_gained_by_electrons_in_a_betatron.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex5.5 :: Page-5.20 (2009)\n",
"clc;clear;\n",
"e = 1.6e-019; // Charge on an electron, C\n",
"D = 2.0; // Diameter of the stable orbit in betatron, m\n",
"R = D/2; // Radius of the stable orbit in betatron, m\n",
"B = 0.5; // Magnetic field of betatron, wb/metre square\n",
"c = 3e+08; // final speed of electron in betatron, m/s\n",
"E = B*e*R*c; // Final energy gained by electrons in a betatron, eV\n",
"printf('\nThe final energy gained by electrons in the betatron = %3.1e eV', E/e);\n",
"\n",
"// Result\n",
"// The final energy gained by electrons in the betatron = 1.5e+08 eV "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.6: Energy_produced_in_fission_of_U235.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex5.6 :: Page-5.27 (2009)\n",
"clc;clear;\n",
"e = 1.6e-019; // Energy equivalent of 1 eV, J/eV\n",
"A = 235; // Atomic weight of uranium, gm/mol\n",
"N_A = 6.023e+026; // No. of atoms present in 235 kg of uranium\n",
"N = N_A/(A*1000); // No. of nuceli of uranium per gram\n",
"E = N*200; // Energy produced by 1 g of U-235, MeV\n",
"printf('\nThe energy produced by 1 g of U-235 = %3.1e joule', E*e*1e+06);\n",
"\n",
"// Result\n",
"// The energy produced by 1 g of U-235 = 8.2e+10 joule "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.7: Power_output_of_nuclear_reactor.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex5.7 :: Page-5.32 (2009)\n",
"clc;clear;\n",
"A = 235; // Atomic weight of uranium, gm/mol\n",
"N_A = 6.023e+026; // No. of atoms present in 235 kg of uranium-235\n",
"N = N_A*5/A; // No. of nuceli of uranium in 5 kg of U-235\n",
"E = N*200; // Energy released in the fission of 5 kg of U-235, MeV\n",
"t = 24*3600; // Time taken to consume 5 kg of U-235, sec\n",
"P = E/t; // Total power output of the nuclear reactor, MeV per second\n",
"printf('\nThe total power output of the nuclear reactor = %4.2e MeV per second', P);\n",
"\n",
"// Result\n",
"// The total power output of the nuclear reactor = 2.97e+22 MeV per second "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.8: Average_current_in_the_GM_counter_circuit.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex5.8 :: Page-5.34 (2009)\n",
"clc;clear;\n",
"e = 1.6e-019; // Electronic charge, C\n",
"f = 450; // Count rate of GM counter, counts/min\n",
"N = f*1e+08; // Total number of electrons collected per min\n",
"Q = N*e; // Charge collected per min, C\n",
"I = Q/60; // Averge current in the GM counter, A\n",
"printf('\nThe averge current in the GM counter= %3.1e A', I);\n",
"\n",
"// Result\n",
"// The averge current in the GM counter= 1.2e-10 A "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.9: Energy_needed_to_remove_a_neutron_from_Ca_nucleus.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex5.9 :: Page-5.39 (2009)\n",
"clc;clear;\n",
"m_Ca_41 = 40.962278; // Mass of one Ca-41 nuclei, amu\n",
"m_Ca_42 = 41.958618; // Mass of one Ca-41 nuclei, amu\n",
"m_n = 1.008665; // Mass of a neutron, amu\n",
"delta_m = m_Ca_42 - (m_Ca_41 + m_n); // Difference in the mass of Ca-42 and Ca_41 nuclei, amu\n",
"E = delta_m*(931.49); // Binding energy of the missing neutron, MeV\n",
"printf('\nThe energy needed to remove a neutron from Ca-42 nucleus = %5.2f MeV', abs(E));\n",
"\n",
"// Result\n",
"// The energy needed to remove a neutron from Ca-42 nucleus = 11.48 MeV "
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Scilab",
"language": "scilab",
"name": "scilab"
},
"language_info": {
"file_extension": ".sce",
"help_links": [
{
"text": "MetaKernel Magics",
"url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
}
],
"mimetype": "text/x-octave",
"name": "scilab",
"version": "0.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|