1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 4: Polarization"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.10: Thickness_of_quarter_wave_plate.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex4.10:: Page-4.23 (2009)\n",
"clc; clear;\n",
"mu_o = 1.658; // Refractive index of ordinary wave\n",
"mu_e = 1.486; // Refractive index of extraordinary wave\n",
"lambda = 5893e-008; // Wavelength of light used, m\n",
"// As (mu_o - mu_e)*t = lambda/4, solving for t\n",
"t = lambda/(4*(mu_o - mu_e)); // Thickness of quarter-wave plate, cm\n",
"\n",
"printf('\nThe thickness of quarter-wave plate = %3.1e cm', t);\n",
"\n",
"// Result \n",
"// The thickness of quarter-wave plate = 8.6e-005 cm \n",
"\n",
" "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.11: Least_thickness_of_plate_for_which_emergent_beam_is_plane_polarised.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex4.11:: Page-4.23 (2009)\n",
"clc; clear;\n",
"mu_o = 1.5442; // Refractive index of ordinary wave\n",
"mu_e = 1.5533; // Refractive index of extraordinary wave\n",
"lambda = 5000e-008; // Wavelength of light used, m\n",
"// As (mu_o - mu_e)*t = lambda/4, solving for t\n",
"t = lambda/(4*(mu_e - mu_o)); // Least thickness of plate for which emergent beam is plane polarised, cm\n",
"\n",
"printf('\nThe least thickness of plate for which emergent beam is plane polarised = %4.2e cm', t);\n",
"\n",
"// Result \n",
"// The least thickness of plate for which emergent beam is plane polarised = 1.37e-003 cm \n",
"\n",
" "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.12: Difference_in_refractive_indices_of_rays.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex4.12:: Page-4.23 (2009)\n",
"clc; clear;\n",
"lambda = 5893e-008; // Wavelength of light used, m\n",
"t = 0.005; // Thickness of the crystal, cm\n",
"// As for quarter wave plate, mu_diff*t = (mu_o - mu_e)*t = lambda/4, solving for mu_diff\n",
"mu_diff = lambda/(4*t); // The difference in refractive indices of rays, cm\n",
"printf('\nThe least thickness of plate for which emergent beam is plane polarised = %4.2e cm', mu_diff);\n",
"\n",
"// Result \n",
"// The least thickness of plate for which emergent beam is plane polarised = 2.95e-003 cm \n",
"\n",
" "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.13: The_thickness_of_a_half_wave_plate.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex4.13:: Page-4.24 (2009)\n",
"clc; clear;\n",
"mu_o = 1.54; // Refractive index of ordinary wave\n",
"mu_e = 1.45; // Refractive index of extraordinary wave\n",
"lambda = 5500e-008; // Wavelength of light used, m\n",
"// As for a half wave plate, (mu_o - mu_e)*t = lambda/4, solving for t\n",
"t = lambda/(2*(mu_o - mu_e)); // The thickness of a half wave plate for wavelength, cm\n",
"\n",
"printf('\nThe thickness of a half wave plate for wavelength = %4.2e cm', t);\n",
"\n",
"// Result \n",
"// The thickness of a half wave plate for wavelength = 3.06e-004 cm \n",
"\n",
" "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.14: The_thickness_of_a_quarter_wave_plate.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex4.14:: Page-4.24 (2009)\n",
"clc; clear;\n",
"mu_o = 1.55; // Refractive index of ordinary wave\n",
"mu_e = 1.52; // Refractive index of extraordinary wave\n",
"lambda = 5500e-008; // Wavelength of light used, m\n",
"// As for a half wave plate, (mu_o - mu_e)*t = lambda/4, solving for t\n",
"t = lambda/(4*(mu_o - mu_e)); // The thickness of a quarter wave plate for wavelength, cm\n",
"\n",
"printf('\nThe thickness of a quarter wave plate for wavelength = %4.2e cm', t);\n",
"\n",
"// Result \n",
"// The thickness of a quarter wave plate for wavelength = 4.58e-004 cm \n",
"\n",
" "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.15: The_thickness_of_a_half_wave_plate_quartz.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex4.15:: Page-4.24 (2009)\n",
"clc; clear;\n",
"mu_o = 1.51; // Refractive index of ordinary wave\n",
"mu_e = 1.55; // Refractive index of extraordinary wave\n",
"lambda = 6000e-008; // Wavelength of light used, m\n",
"// As for a half wave plate, (mu_o - mu_e)*t = lambda/4, solving for t\n",
"t = lambda/(2*(mu_e - mu_o)); // The thickness of a quarter wave plate for wavelength, cm\n",
"\n",
"printf('\nThe thickness of a half wave plate quartz = %4.2e cm', t);\n",
"\n",
"// Result \n",
"// The thickness of a half wave plate quartz = 7.50e-004 cm \n",
"\n",
" "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.16: Difference_between_refractive_indices.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex4.16:: Page-4.24 (2009)\n",
"clc; clear;\n",
"lambda = 5890e-008; // Wavelength of light used, m\n",
"t = 7.5e-004; // Thickness of the crystal, cm\n",
"// As for quarter wave plate, mu_diff*t = (mu_e - mu_o)*t = lambda/4, solving for mu_diff\n",
"mu_diff = lambda/(4*t); // The difference in refractive indices of rays, cm\n",
"printf('\nThe difference between refractive indices = %6.4f cm', mu_diff);\n",
"\n",
"// Result \n",
"// The difference between refractive indices = 0.0196 cm \n",
"\n",
" "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.17: Specific_rotation_of_superposition.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex4.17:: Page-4.34 (2009)\n",
"clc; clear;\n",
"theta = 15.2; // Angle through which plane of polarization is rotated, degrees\n",
"c = 0.2; // Concentration of sugar, g/cc\n",
"l = 25; // Length of sugar, cm\n",
"S = 10*theta/(l*c); // Specific rotation of superposition, degrees\n",
"\n",
"printf('\nThe specific rotation of superposition = %4.1f cm', S);\n",
"\n",
"// Result \n",
"// The specific rotation of superposition = 30.4 cm \n",
"\n",
" "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.18: Strength_of_sugar_solution.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex4.18: : Page-4.34 (2009)\n",
"clc; clear;\n",
"theta = 15.2; // Angle through which plane of polarization is rotated, degrees\n",
"S = 65; // Specific rotation of sugar solution, degrees\n",
"l = 15; // Length of sugar, cm\n",
"// As S = 10*theta/(l*c), solving for c\n",
"c = 10*theta/(l*S); // Concentration of sugar, g/cc\n",
"\n",
"printf('\nThe strength of sugar solution = %4.2f g/cc', c);\n",
"\n",
"// Result \n",
"// The strength of sugar solution = 0.16 g/cc \n",
"\n",
" "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.19: Quantity_of_sugar_contained_in_the_tube_in_the_form_of_solution.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex4.19:: Page-4.34 (2009)\n",
"clc; clear;\n",
"theta = 15; // Angle through which plane of polarization is rotated, degrees\n",
"S = 69; // Specific rotation of sugar solution, degrees\n",
"l = 10; // Length of sugar, cm\n",
"V = 50; // Volume of the tube, cc\n",
"// As S = 10*theta/(l*c), solving for c\n",
"c = 10*theta/(l*S); // Concentration of sugar, g/cc\n",
"M = c*V; // Mass of sugar in solution, g\n",
"\n",
"printf('\nThe quantity of sugar contained in the tube in the form of solution = %5.2f g', M);\n",
"\n",
"// Result \n",
"// The quantity of sugar contained in the tube in the form of solution = 10.87 g \n",
"\n",
" "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.1: Refractive_index_of_the_material.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex4.1:: Page-4.5 (2009)\n",
"clc; clear;\n",
"ip = 60; // Polarizing angle, degrees\n",
"mu = tand(ip); // Refractive index of the material from Brewster's law \n",
"printf('\nThe refractive index of the material = %5.3f', mu);\n",
"\n",
"// Result \n",
"// The refractive index of the material = 1.732 "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.20: Specific_rotation_of_sugar_solution_from_the_given_data.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex4.20:: Page-4.35 (2009)\n",
"clc; clear;\n",
"theta = 8; // Angle through which plane of polarization is rotated, degrees\n",
"M = 10; // Amount of sugar, g\n",
"l = 14; // Length of the tube, cm\n",
"V = 44; // Volume of sugar solution, cc\n",
"c = M/V; // Concentration of sugar, g/cc\n",
"S = 10*theta/(l*c); // Specific rotation of sugar solution from the given data, degrees\n",
"\n",
"printf('\nThe specific rotation of sugar solution from the given data = %4.1f degrees', S);\n",
"\n",
"// Result \n",
"// The specific rotation of sugar solution from the given data = 25.1 degrees \n",
"\n",
" "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.21: Angle_of_rotation_of_the_plane_of_polarization.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex4.21:: Page-4.35 (2009)\n",
"clc; clear;\n",
"m = 15; // Amount of sugar, g\n",
"S = 66; // Specific rotation of sugar solution from the given data, degrees\n",
"l = 20; // Length of the tube, cm\n",
"V = 100; // Volume of sugar solution, cc\n",
"c = m/V; // Concentration of sugar, g/cc\n",
"// As S = 10*theta/(l*c), solving for theta\n",
"theta = S*l*c/10; // Angle of rotation of the plane of polarization, degrees\n",
"\n",
"printf('\nThe angle of rotation of the plane of polarization = %4.1f degrees', theta);\n",
"\n",
"// Result \n",
"// The angle of rotation of the plane of polarization = 19.8 degrees \n",
"\n",
" "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.22: Angle_of_rotation_of_the_optically_active_solution.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex4.22: : Page-4.35 (2009)\n",
"clc; clear;\n",
"l = 5; // Length of the tube, dm\n",
"m = 50; // Amount of sugar, g\n",
"S = 50; // Specific rotation of sugar solution, degrees\n",
"V = 150; // Volume of sugar solution, cc\n",
"c = m/V; // Concentration of sugar, g/cc\n",
"// As S = theta/(l*c), solving for theta\n",
"theta = S*l*c; // Angle of rotation of the optically active solution\n",
"\n",
"printf('\nThe angle of rotation of the optically active solution = %4.1f degrees', theta);\n",
"\n",
"// Result \n",
"// The angle of rotation of the optically active solution = 83.3 degrees \n",
"\n",
" "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.23: Angle_of_rotation_in_a_tube_of_new_length.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex4.23:: Page-4.35 (2009)\n",
"clc; clear;\n",
"l = 3; // Length of the tube, dm\n",
"theta = 17.0; // Angle of rotation of the plane of polarization, degrees\n",
"c = 1.0; // For simplicity assume concentration of solution to be unity, g/cc\n",
"l_prime = 2.5; // New length of the tube, dm\n",
"c_prime = 1.25*c; // Concentration of solution with 25 cm length of tube, g/cc\n",
"theta_prime = theta*l_prime*c_prime/(l*c); // Angle of rotation in a tube of new length\n",
"\n",
"\n",
"printf('\nThe angle of rotation in a tube of new length of %3.1f cm = %4.1f degrees', l_prime, theta_prime);\n",
"\n",
"// Result \n",
"// The angle of rotation in a tube of new length of 2.5 cm = 17.7 degrees \n",
"\n",
" "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.24: Mass_of_sugar_in_the_solution_contained_in_the_tube.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex4.24:: Page-4.36 (2009)\n",
"clc; clear;\n",
"l = 17; // Length of the tube, cm\n",
"V = 37; // Volume of sugar solution, cc\n",
"theta = 15; // Angle of rotation of the plane of polarization, degrees\n",
"S = 68; // Specific rotation of sugar solution, degrees\n",
"// As S = 10*theta/(l*c), solving for c\n",
"c = 10*theta/(l*S); // Concentration of sugar solution, g/cc\n",
"m = c*V; // Mass of sugar in the solution contained in the tube, g\n",
"\n",
"printf('\nThe mass of sugar in the solution contained in the tube = %3.1f g', m);\n",
"\n",
"// Result \n",
"// The mass of sugar in the solution contained in the tube = 4.8 g \n",
"\n",
" "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.25: Percentage_purity_of_the_sugar_sample.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex4.25:: Page-4.36 (2009)\n",
"clc; clear;\n",
"m = 80; // Mass of sugar in the solution, g\n",
"theta = 9.9; // Angle of rotation of the plane of polarization, degrees\n",
"l = 20; // Length of the tube, cm\n",
"S_pure = 66; // Specific rotation of pure sugar solution, degrees per dm per (g/cc)\n",
"c = 0.08; // Concentration of sugar solution, g/cc\n",
"S = 10*theta/(l*c); // calculated specific rotation of sugar solution, degrees per dm per (g/cc)\n",
"percent_purity = S/S_pure*100; // Percentage purity of sugar sample, percent\n",
"\n",
"printf('\nThe percentage purity of the sugar sample = %5.2f percent', percent_purity);\n",
"\n",
"// Result \n",
"// The percentage purity of the sugar sample = 93.75 percent \n",
"\n",
" "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.26: Angle_of_rotation_produced_by_the_polarimeter_plate.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex4.26:: Page-4.42 (2009)\n",
"clc; clear;\n",
"lambda = 6600e-010; // Wavelength of circularly polarized light, cm\n",
"mu_R = 1.53914; // Refractive index of right-handed circularly polarized light\n",
"mu_L = 1.53920; // Refractive index of left-handed circularly polarized light\n",
"t = 0.0005; // Thickness of polarimeter plate, m\n",
"theta = %pi/lambda*(mu_L-mu_R)*t; // Angle of rotation produced by the polarimeter plate, radian\n",
"\n",
"printf('\nThe angle of rotation produced by the polarimeter plate = %4.2f degrees', theta*180/%pi);\n",
"\n",
"// Result \n",
"// The angle of rotation produced by the polarimeter plate = 8.18 degrees \n",
"\n",
" "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.2: Polarization_by_reflection.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex4.2:: Page-4.6 (2009)\n",
"clc; clear;\n",
"ip = 57; // Polarizing angle, degrees\n",
"mu = tand(ip); // Refractive index of the material from Brewster's law \n",
"printf('\nThe refractive index of the material = %4.2f', mu);\n",
"\n",
"// Result \n",
"// The refractive index of the material = 1.54 "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.3: Angle_of_refraction_of_the_ray.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex4.3:: Page-4.6 (2009)\n",
"clc; clear;\n",
"mu = 1.53; // Refractive index of the material from Brewster's law \n",
"// As mu = tand(ip), solving for ip\n",
"ip = atand(mu); // Polarizing angle, degrees\n",
"// But mu = sind(ip)/sind(r), solving for r\n",
"r = asind(sind(ip)/mu); // Angle of refraction, degrees\n",
"\n",
"printf('\nThe angle of refraction of the ray = %4.1f degrees', r);\n",
"\n",
"// Result \n",
"// The angle of refraction of the ray = 33.2 degrees "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.4: Angle_of_minimum_deviation_for_green_light.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex4.4:: Page-4.6 (2009)\n",
"clc; clear;\n",
"ip = 60; // Polarizing angle, degrees\n",
"A = 60; // Angle of equilateral prism, degrees\n",
"mu = tand(ip); // Refractive index of the material from Brewster's law \n",
"// For angle of minimum deviation in prism, delta_m, refractive index\n",
"// mu = sind((A+delta_m)/2)/sind(A/2), solving for delta_m\n",
"delta_m = 2*asind(mu*sind(A/2))-A; // Angle of minimum deviation, degrees\n",
"\n",
"printf('\nThe angle of minimum deviation for green light = %2d degrees', ceil(delta_m));\n",
"\n",
"// Result \n",
"// The angle of minimum deviation for green light = 60 degrees "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.5: Polarizing_angles_of_the_materials_for_given_refractive_indices.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex4.5:: Page-4.7 (2009)\n",
"clc; clear;\n",
"mu = [1.33 1.65 1.55]; // Refractive indices of the material\n",
"// As mu = tand(ip), solving for ip\n",
"ip = atand(mu); // Brewster's law gives polarizing angle, degrees\n",
"for i =1:1:3 \n",
"printf('\nmu = %4.2f, ip = %4.1f degrees', mu(i), ip(i));\n",
"end\n",
"\n",
"// Result \n",
"// mu = 1.33, ip = 53.1 degrees\n",
"// mu = 1.65, ip = 58.8 degrees\n",
"// mu = 1.55, ip = 57.2 degrees "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.6: Angle_of_rotation_of_analyser.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex4.6:: Page-4.8 (2009)\n",
"clc; clear;\n",
"E0 = 1; // For simplicity assume maximum intensity through polarizer and analyser to be unity, unit\n",
"E = 1/6*E0; // One-sixth of the maximum intensity, unit\n",
"// From Malus law, E = E0*cosd(theta)^2, solving for theta\n",
"theta = acosd(sqrt(E)); // Angle through which analyser should be rotated, degrees\n",
"printf('\nThe angle of rotation of analyser = %4.1f degrees', theta);\n",
"\n",
"// Result \n",
"// The angle of rotation of analyser = 65.9 "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.7: Angles_of_rotation_of_analyser_for_given_transmitted_light_intensities.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex4.7:: Page-4.8 (2009)\n",
"clc; clear;\n",
"E0 = 1; // For simplicity assume maximum intensity through polarizer and analyser to be unity, unit\n",
"light_fraction = [0.25 0.45 0.65 0.75 0.0];\n",
"for i = 1:1:5\n",
"E = light_fraction(i)*E0; // Light fraction of the maximum intensity, unit\n",
"// From Malus law, E = E0*cosd(theta)^2, solving for theta\n",
"theta = acosd(sqrt(E)); // Angle through which analyser should be rotated, degrees\n",
"printf('\nE = %4.2fE0, theta = %4.1f degrees', light_fraction(i), theta);\n",
"end\n",
"\n",
"// Result \n",
"// E = 0.25E0, theta = 60.0 degrees\n",
"// E = 0.45E0, theta = 47.9 degrees\n",
"// E = 0.65E0, theta = 36.3 degrees\n",
"// E = 0.75E0, theta = 30.0 degrees\n",
"// E = 0.00E0, theta = 90.0 degrees "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.8: Angle_of_minimum_deviation_for_green_light.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex4.8:: Page-4.9 (2009)\n",
"clc; clear;\n",
"ip = 60; // Polarizing angle, degrees\n",
"mu = tand(ip); // Brewster's law giving refractive index\n",
"A = 60; // Angle of prism, degrees\n",
"d = (mu - 1)*A; // Angle of minimum deviation for green light, degrees\n",
"\n",
"printf('\nThe angle of minimum deviation for green light = %5.2f degrees', d);\n",
"\n",
"// Result \n",
"// The angle of minimum deviation for green light = 43.92 degrees \n",
" "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4.9: Ratio_of_ordinary_to_extraordinary_ray_intensities.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex4.9:: Page-4.9 (2009)\n",
"clc; clear;\n",
"theta = 30; // Angle which the plane of vibration makes with the incident beam, degrees\n",
"// As intensity of ordinary and extraordinary ray are\n",
"// E_E = A^2*cosd(theta)^2 and E_O = A^2*sind(theta)^2, solving for E_E/E_O\n",
"EE_ratio_EO = cotd(30)^2; // Ratio of ordinary and extraordinary ray intensities \n",
"\n",
"printf('\nThe ratio of ordinary to extraordinary ray intensities = %d', EE_ratio_EO);\n",
"\n",
"// Result \n",
"// The ratio of ordinary to extraordinary ray intensities = 3 \n",
" "
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Scilab",
"language": "scilab",
"name": "scilab"
},
"language_info": {
"file_extension": ".sce",
"help_links": [
{
"text": "MetaKernel Magics",
"url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
}
],
"mimetype": "text/x-octave",
"name": "scilab",
"version": "0.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|